""" EfficientViT (by MIT Song Han's Lab) Paper: `Efficientvit: Enhanced linear attention for high-resolution low-computation visual recognition` - https://arxiv.org/abs/2205.14756 Code adapted from timm, https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/efficientvit_mit.py Original code (that timm adapted from) at https://github.com/mit-han-lab/efficientvit """ import collections.abc import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from transformers.activations import ACT2FN from transformers.modeling_utils import PreTrainedModel from transformers.pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer from transformers.utils import ModelOutput from surya.model.recognition.config import DonutSwinConfig _EXPECTED_OUTPUT_SHAPE = [1, 49, 1024] @dataclass # Copied from transformers.models.swin.modeling_swin.SwinEncoderOutput with Swin->DonutSwin class DonutSwinEncoderOutput(ModelOutput): last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class DonutSwinModelOutput(ModelOutput): last_hidden_state: torch.FloatTensor = None # Copied from transformers.models.swin.modeling_swin.window_partition def window_partition(input_feature, window_size): """ Partitions the given input into windows. """ batch_size, height, width, num_channels = input_feature.shape input_feature = input_feature.view( batch_size, height // window_size, window_size, width // window_size, window_size, num_channels ) windows = input_feature.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels) return windows # Copied from transformers.models.swin.modeling_swin.window_reverse def window_reverse(windows, window_size, height, width): """ Merges windows to produce higher resolution features. """ num_channels = windows.shape[-1] windows = windows.view(-1, height // window_size, width // window_size, window_size, window_size, num_channels) windows = windows.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, height, width, num_channels) return windows # Copied from transformers.models.swin.modeling_swin.SwinEmbeddings with Swin->DonutSwin class DonutSwinEmbeddings(nn.Module): """ Construct the patch and position embeddings. Optionally, also the mask token. """ def __init__(self, config, use_mask_token=False): super().__init__() self.patch_embeddings = DonutSwinPatchEmbeddings(config) num_patches = self.patch_embeddings.num_patches self.patch_grid = self.patch_embeddings.grid_size self.mask_token = nn.Parameter(torch.zeros(1, 1, config.embed_dim)) if use_mask_token else None if config.use_absolute_embeddings: self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.embed_dim)) else: self.position_embeddings = None self.norm = nn.LayerNorm(config.embed_dim) self.dropout = nn.Dropout(config.hidden_dropout_prob) def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: """ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. Source: https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 """ num_patches = embeddings.shape[1] - 1 num_positions = self.position_embeddings.shape[1] - 1 if num_patches == num_positions and height == width: return self.position_embeddings class_pos_embed = self.position_embeddings[:, 0] patch_pos_embed = self.position_embeddings[:, 1:] dim = embeddings.shape[-1] h0 = height // self.config.patch_size w0 = width // self.config.patch_size # we add a small number to avoid floating point error in the interpolation # see discussion at https://github.com/facebookresearch/dino/issues/8 h0, w0 = h0 + 0.1, w0 + 0.1 patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim) patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) patch_pos_embed = nn.functional.interpolate( patch_pos_embed, scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)), mode="bicubic", align_corners=False, ) patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) def forward( self, pixel_values: Optional[torch.FloatTensor], bool_masked_pos: Optional[torch.BoolTensor] = None, interpolate_pos_encoding: bool = False, ) -> Tuple[torch.Tensor]: _, num_channels, height, width = pixel_values.shape embeddings, output_dimensions = self.patch_embeddings(pixel_values) embeddings = self.norm(embeddings) batch_size, seq_len, _ = embeddings.size() if bool_masked_pos is not None: mask_tokens = self.mask_token.expand(batch_size, seq_len, -1) # replace the masked visual tokens by mask_tokens mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) embeddings = embeddings * (1.0 - mask) + mask_tokens * mask if self.position_embeddings is not None: if interpolate_pos_encoding: embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) else: embeddings = embeddings + self.position_embeddings[:, :seq_len] embeddings = self.dropout(embeddings) return embeddings, output_dimensions # Copied from transformers.models.swin.modeling_swin.SwinPatchEmbeddings with Swin->DonutSwin class DonutSwinPatchEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.embed_dim image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.grid_size = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def maybe_pad(self, pixel_values, height, width): if width % self.patch_size[1] != 0: pad_values = (0, self.patch_size[1] - width % self.patch_size[1]) pixel_values = nn.functional.pad(pixel_values, pad_values) if height % self.patch_size[0] != 0: pad_values = (0, 0, 0, self.patch_size[0] - height % self.patch_size[0]) pixel_values = nn.functional.pad(pixel_values, pad_values) return pixel_values def forward(self, pixel_values: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor, Tuple[int]]: _, num_channels, height, width = pixel_values.shape # pad the input to be divisible by self.patch_size, if needed pixel_values = self.maybe_pad(pixel_values, height, width) embeddings = self.projection(pixel_values) _, _, height, width = embeddings.shape output_dimensions = (height, width) embeddings = embeddings.flatten(2).transpose(1, 2) return embeddings, output_dimensions # Copied from transformers.models.swin.modeling_swin.SwinPatchMerging class DonutSwinPatchMerging(nn.Module): """ Patch Merging Layer. Args: input_resolution (`Tuple[int]`): Resolution of input feature. dim (`int`): Number of input channels. norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`): Normalization layer class. """ def __init__(self, input_resolution: Tuple[int], dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None: super().__init__() self.input_resolution = input_resolution self.dim = dim self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) self.norm = norm_layer(4 * dim) def maybe_pad(self, input_feature, height, width): should_pad = (height % 2 == 1) or (width % 2 == 1) if should_pad: pad_values = (0, 0, 0, width % 2, 0, height % 2) input_feature = nn.functional.pad(input_feature, pad_values) return input_feature def forward(self, input_feature: torch.Tensor, input_dimensions: Tuple[int, int]) -> torch.Tensor: height, width = input_dimensions # `dim` is height * width batch_size, dim, num_channels = input_feature.shape input_feature = input_feature.view(batch_size, height, width, num_channels) # pad input to be disible by width and height, if needed input_feature = self.maybe_pad(input_feature, height, width) # [batch_size, height/2, width/2, num_channels] input_feature_0 = input_feature[:, 0::2, 0::2, :] # [batch_size, height/2, width/2, num_channels] input_feature_1 = input_feature[:, 1::2, 0::2, :] # [batch_size, height/2, width/2, num_channels] input_feature_2 = input_feature[:, 0::2, 1::2, :] # [batch_size, height/2, width/2, num_channels] input_feature_3 = input_feature[:, 1::2, 1::2, :] # batch_size height/2 width/2 4*num_channels input_feature = torch.cat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1) input_feature = input_feature.view(batch_size, -1, 4 * num_channels) # batch_size height/2*width/2 4*C input_feature = self.norm(input_feature) input_feature = self.reduction(input_feature) return input_feature # Copied from transformers.models.beit.modeling_beit.drop_path def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.swin.modeling_swin.SwinDropPath class DonutSwinDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) # Copied from transformers.models.swin.modeling_swin.SwinSelfAttention with Swin->DonutSwin class DonutSwinSelfAttention(nn.Module): def __init__(self, config, dim, num_heads, num_kv_heads, window_size): super().__init__() if dim % num_heads != 0: raise ValueError( f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})" ) self.num_attention_heads = num_heads self.num_kv_heads = num_kv_heads self.kv_repeats = self.num_attention_heads // self.num_kv_heads self.attention_head_size = int(dim / num_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.kv_head_size = self.num_kv_heads * self.attention_head_size self.window_size = ( window_size if isinstance(window_size, collections.abc.Iterable) else (window_size, window_size) ) self.relative_position_bias_table = nn.Parameter( torch.zeros((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), num_heads) ) # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.window_size[0]) coords_w = torch.arange(self.window_size[1]) coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij")) coords_flatten = torch.flatten(coords, 1) relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] relative_coords = relative_coords.permute(1, 2, 0).contiguous() relative_coords[:, :, 0] += self.window_size[0] - 1 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) self.register_buffer("relative_position_index", relative_position_index) self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(self.all_head_size, self.kv_head_size, bias=config.qkv_bias) self.value = nn.Linear(self.all_head_size, self.kv_head_size, bias=config.qkv_bias) self.dropout_p = config.attention_probs_dropout_prob def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def transpose_kv_for_scores(self, x, repeats): new_x_shape = x.size()[:-1] + (self.num_kv_heads, self.attention_head_size) x = x.view(new_x_shape) x = x.repeat(1, 1, repeats, 1) # repeat the values for each key-value head to match query dim return x.permute(0, 2, 1, 3).contiguous() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: batch_size, dim, num_channels = hidden_states.shape mixed_query_layer = self.query(hidden_states) # Final is (batch_size, num_attention_heads, seq_len, attention_head_size) key_layer = self.transpose_kv_for_scores(self.key(hidden_states), self.kv_repeats) value_layer = self.transpose_kv_for_scores(self.value(hidden_states), self.kv_repeats) query_layer = self.transpose_for_scores(mixed_query_layer) relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)] relative_position_bias = relative_position_bias.view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1 ) relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous().unsqueeze(0) if attention_mask is None: attention_mask = relative_position_bias else: mask_shape = attention_mask.shape[0] repeat_count = (batch_size // mask_shape) attention_mask = attention_mask.repeat(repeat_count, 1, 1).unsqueeze(1) attention_mask = attention_mask + relative_position_bias attn_output = torch.nn.functional.scaled_dot_product_attention( query_layer.contiguous(), key_layer.contiguous(), value_layer.contiguous(), attn_mask=attention_mask, dropout_p=self.dropout_p if self.training else 0.0, scale=self.attention_head_size**-0.5, ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.view(batch_size, dim, num_channels) outputs = (attn_output,) return outputs # Copied from transformers.models.swin.modeling_swin.SwinSelfOutput class DonutSwinSelfOutput(nn.Module): def __init__(self, config, dim): super().__init__() self.dense = nn.Linear(dim, dim) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.swin.modeling_swin.SwinAttention with Swin->DonutSwin class DonutSwinAttention(nn.Module): def __init__(self, config, dim, num_heads, num_kv_heads, window_size): super().__init__() self.self = DonutSwinSelfAttention(config, dim, num_heads, num_kv_heads, window_size) self.output = DonutSwinSelfOutput(config, dim) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self(hidden_states, attention_mask, head_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.swin.modeling_swin.SwinIntermediate class DonutSwinIntermediate(nn.Module): def __init__(self, config, dim): super().__init__() self.dense = nn.Linear(dim, int(config.mlp_ratio * dim)) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.swin.modeling_swin.SwinOutput class DonutSwinOutput(nn.Module): def __init__(self, config, dim): super().__init__() self.dense = nn.Linear(int(config.mlp_ratio * dim), dim) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.swin.modeling_swin.SwinLayer with Swin->DonutSwin class DonutSwinLayer(nn.Module): def __init__(self, config, dim, input_resolution, num_heads, num_kv_heads, shift_size=0): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.shift_size = shift_size self.window_size = config.window_size self.input_resolution = input_resolution self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps) self.attention = DonutSwinAttention(config, dim, num_heads, num_kv_heads, window_size=self.window_size) self.drop_path = DonutSwinDropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity() self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps) self.intermediate = DonutSwinIntermediate(config, dim) self.output = DonutSwinOutput(config, dim) def set_shift_and_window_size(self, input_resolution): if min(input_resolution) <= self.window_size: # if window size is larger than input resolution, we don't partition windows self.shift_size = int(0) self.window_size = ( torch.min(torch.tensor(input_resolution)) if torch.jit.is_tracing() else min(input_resolution) ) def get_attn_mask(self, height, width, dtype, device): if self.shift_size > 0: # calculate attention mask for SW-MSA img_mask = torch.zeros((1, height, width, 1), dtype=dtype, device=device) height_slices = ( slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None), ) width_slices = ( slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None), ) count = 0 for height_slice in height_slices: for width_slice in width_slices: img_mask[:, height_slice, width_slice, :] = count count += 1 mask_windows = window_partition(img_mask, self.window_size) mask_windows = mask_windows.view(-1, self.window_size * self.window_size) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) else: attn_mask = None return attn_mask def maybe_pad(self, hidden_states, height, width): pad_right = (self.window_size - width % self.window_size) % self.window_size pad_bottom = (self.window_size - height % self.window_size) % self.window_size pad_values = (0, 0, 0, pad_right, 0, pad_bottom) hidden_states = nn.functional.pad(hidden_states, pad_values) return hidden_states, pad_values def forward( self, hidden_states: torch.Tensor, input_dimensions: Tuple[int, int], head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, always_partition: Optional[bool] = False, ) -> Tuple[torch.Tensor, torch.Tensor]: if not always_partition: self.set_shift_and_window_size(input_dimensions) else: pass height, width = input_dimensions batch_size, _, channels = hidden_states.size() shortcut = hidden_states hidden_states = self.layernorm_before(hidden_states) hidden_states = hidden_states.view(batch_size, height, width, channels) # pad hidden_states to multiples of window size hidden_states, pad_values = self.maybe_pad(hidden_states, height, width) _, height_pad, width_pad, _ = hidden_states.shape # cyclic shift if self.shift_size > 0: shifted_hidden_states = torch.roll(hidden_states, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) else: shifted_hidden_states = hidden_states # partition windows hidden_states_windows = window_partition(shifted_hidden_states, self.window_size) hidden_states_windows = hidden_states_windows.view(-1, self.window_size * self.window_size, channels) attn_mask = self.get_attn_mask( height_pad, width_pad, dtype=hidden_states.dtype, device=hidden_states_windows.device ) attention_outputs = self.attention( hidden_states_windows, attn_mask, head_mask, output_attentions=output_attentions ) attention_output = attention_outputs[0] attention_windows = attention_output.view(-1, self.window_size, self.window_size, channels) shifted_windows = window_reverse(attention_windows, self.window_size, height_pad, width_pad) # reverse cyclic shift if self.shift_size > 0: attention_windows = torch.roll(shifted_windows, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) else: attention_windows = shifted_windows was_padded = pad_values[3] > 0 or pad_values[5] > 0 if was_padded: attention_windows = attention_windows[:, :height, :width, :].contiguous() attention_windows = attention_windows.view(batch_size, height * width, channels) hidden_states = shortcut + self.drop_path(attention_windows) layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) layer_output = hidden_states + self.output(layer_output) layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,) return layer_outputs # Copied from transformers.models.swin.modeling_swin.SwinStage with Swin->DonutSwin class DonutSwinStage(nn.Module): def __init__(self, config, dim, input_resolution, depth, num_heads, num_kv_heads, drop_path, downsample): super().__init__() self.config = config self.dim = dim self.blocks = nn.ModuleList( [ DonutSwinLayer( config=config, dim=dim, input_resolution=input_resolution, num_heads=num_heads, num_kv_heads=num_kv_heads, shift_size=0 if (i % 2 == 0) else config.window_size // 2, ) for i in range(depth) ] ) # patch merging layer if downsample is not None: self.downsample = downsample(input_resolution, dim=dim, norm_layer=nn.LayerNorm) else: self.downsample = None self.pointing = False def forward( self, hidden_states: torch.Tensor, input_dimensions: Tuple[int, int], head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, always_partition: Optional[bool] = False, ) -> Tuple[torch.Tensor]: height, width = input_dimensions for i, layer_module in enumerate(self.blocks): layer_head_mask = head_mask[i] if head_mask is not None else None layer_outputs = layer_module( hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition ) hidden_states = layer_outputs[0] hidden_states_before_downsampling = hidden_states if self.downsample is not None: height_downsampled, width_downsampled = (height + 1) // 2, (width + 1) // 2 output_dimensions = (height, width, height_downsampled, width_downsampled) hidden_states = self.downsample(hidden_states_before_downsampling, input_dimensions) else: output_dimensions = (height, width, height, width) stage_outputs = (hidden_states, hidden_states_before_downsampling, output_dimensions) if output_attentions: stage_outputs += layer_outputs[1:] return stage_outputs # Copied from transformers.models.swin.modeling_swin.SwinEncoder with Swin->DonutSwin class DonutSwinEncoder(nn.Module): def __init__(self, config, grid_size): super().__init__() self.num_layers = len(config.depths) self.config = config dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] self.layers = nn.ModuleList( [ DonutSwinStage( config=config, dim=int(config.embed_dim * 2**i_layer), input_resolution=(grid_size[0] // (2**i_layer), grid_size[1] // (2**i_layer)), depth=config.depths[i_layer], num_heads=config.num_heads[i_layer], num_kv_heads=config.num_kv_heads[i_layer], drop_path=dpr[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])], downsample=DonutSwinPatchMerging if (i_layer < self.num_layers - 1) else None, ) for i_layer in range(self.num_layers) ] ) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, input_dimensions: Tuple[int, int], head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, output_hidden_states_before_downsampling: Optional[bool] = False, always_partition: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple, DonutSwinEncoderOutput]: all_hidden_states = () if output_hidden_states else None all_reshaped_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if output_hidden_states: batch_size, _, hidden_size = hidden_states.shape # rearrange b (h w) c -> b c h w reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size) reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) all_hidden_states += (hidden_states,) all_reshaped_hidden_states += (reshaped_hidden_state,) for i, layer_module in enumerate(self.layers): layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition, ) else: layer_outputs = layer_module( hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition ) hidden_states = layer_outputs[0] hidden_states_before_downsampling = layer_outputs[1] output_dimensions = layer_outputs[2] input_dimensions = (output_dimensions[-2], output_dimensions[-1]) if output_hidden_states and output_hidden_states_before_downsampling: batch_size, _, hidden_size = hidden_states_before_downsampling.shape # rearrange b (h w) c -> b c h w # here we use the original (not downsampled) height and width reshaped_hidden_state = hidden_states_before_downsampling.view( batch_size, *(output_dimensions[0], output_dimensions[1]), hidden_size ) reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) all_hidden_states += (hidden_states_before_downsampling,) all_reshaped_hidden_states += (reshaped_hidden_state,) elif output_hidden_states and not output_hidden_states_before_downsampling: batch_size, _, hidden_size = hidden_states.shape # rearrange b (h w) c -> b c h w reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size) reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) all_hidden_states += (hidden_states,) all_reshaped_hidden_states += (reshaped_hidden_state,) if output_attentions: all_self_attentions += layer_outputs[3:] if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return DonutSwinEncoderOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, reshaped_hidden_states=all_reshaped_hidden_states, ) # Copied from transformers.models.swin.modeling_swin.SwinPreTrainedModel with Swin->DonutSwin class DonutSwinPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DonutSwinConfig base_model_prefix = "swin" main_input_name = "pixel_values" supports_gradient_checkpointing = True _no_split_modules = ["DonutSwinStage"] def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) class DonutSwinModel(DonutSwinPreTrainedModel): def __init__(self, config, add_pooling_layer=True, use_mask_token=False): super().__init__(config) self.config = config self.num_layers = len(config.depths) self.num_features = int(config.embed_dim * 2 ** (self.num_layers - 1)) self.embeddings = DonutSwinEmbeddings(config, use_mask_token=use_mask_token) self.encoder = DonutSwinEncoder(config, self.embeddings.patch_grid) self.position_embeddings = nn.Parameter(torch.zeros(1, config.encoder_length, config.hidden_size)) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, bool_masked_pos: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: bool = False, return_dict: Optional[bool] = None, ) -> Union[Tuple, DonutSwinModelOutput]: r""" bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, len(self.config.depths)) embedding_output, input_dimensions = self.embeddings( pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding ) encoder_outputs = self.encoder( embedding_output, input_dimensions, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state += self.position_embeddings[:, :last_hidden_state.size(1), :] return DonutSwinModelOutput( last_hidden_state=last_hidden_state, )