File size: 9,641 Bytes
ef0f225
 
 
 
 
 
 
 
a56aadc
ef0f225
 
 
a56aadc
 
 
 
 
 
ef0f225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a56aadc
ef0f225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77666d7
db8f002
ef0f225
 
 
77666d7
db8f002
ef0f225
 
88e4831
 
ef0f225
 
 
 
d1ec12d
ef0f225
88e4831
7858048
ef0f225
 
 
 
 
 
68c3226
ef0f225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
974ec1a
ef0f225
 
 
 
 
 
 
 
 
 
 
 
a56aadc
d47e225
88e4831
7858048
 
 
ef0f225
 
 
 
 
 
 
 
 
f39c483
ef0f225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f39c483
ef0f225
 
 
 
 
 
ab73481
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
"""
Run the following command to start the demo:
    
python demo_video.py \
    --cfg-path /remote-home/share/jiaqitang/Hawk_Ours/configs/eval_configs/eval.yaml \
    --model_type llama_v2 \
    --gpu-id 0
"""
import requests
import argparse
import os
import random
import subprocess
import sys
import io
import spaces

subprocess.check_call([sys.executable, "-m", "spacy", "download", "en_core_web_sm"])

import numpy as np
import torch
import torch.backends.cudnn as cudnn
import gradio as gr

from hawk.common.config import Config
from hawk.common.dist_utils import get_rank
from hawk.common.registry import registry
from hawk.conversation.conversation_video import Chat, Conversation, default_conversation, SeparatorStyle,conv_llava_llama_2
import decord
decord.bridge.set_bridge('torch')

#%%
# imports modules for registration
from hawk.datasets.builders import *
from hawk.models import *
from hawk.processors import *
from hawk.runners import *
from hawk.tasks import *
import time


def parse_args():
    parser = argparse.ArgumentParser(description="Demo")
    parser.add_argument("--cfg-path", required=False, default='./configs/eval_configs/eval.yaml', help="path to configuration file.")
    parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.")
    parser.add_argument("--model_type", type=str, default='llama_v2', help="The type of LLM")
    parser.add_argument(
        "--options",
        nargs="+",
        help="override some settings in the used config, the key-value pair "
        "in xxx=yyy format will be merged into config file (deprecate), "
        "change to --cfg-options instead.",
    )
    args = parser.parse_args()
    return args


def setup_seeds(config):
    seed = config.run_cfg.seed + get_rank()

    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)

    cudnn.benchmark = False
    cudnn.deterministic = True


# ========================================
#             Model Initialization
# ========================================

print('Initializing Chat')
args = parse_args()
cfg = Config(args)

model_config = cfg.model_cfg
model_config.device_8bit = args.gpu_id
model_cls = registry.get_model_class(model_config.arch)
# model = model_cls.from_config(model_config).to('cuda:{}'.format(args.gpu_id))
model = model_cls.from_config(model_config).to('cuda')
model.eval()
vis_processor_cfg = cfg.datasets_cfg.webvid.vis_processor.train
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
# chat = Chat(model, vis_processor, device='cuda:{}'.format(args.gpu_id))
chat = Chat(model, vis_processor, device='cuda')
print('Initialization Finished')

have_video = 0

# ========================================
#             Gradio Setting
# ========================================


def gradio_reset(chat_state, img_list):
    global have_video
    have_video = 0
    if chat_state is not None:
        chat_state.messages = []
    if img_list is not None:
        img_list = []
    return None, gr.update(value=None, interactive=True), gr.update(interactive=False),gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_list


def upload_imgorvideo(gr_video, text_input, chat_state, chatbot):
    # if args.model_type == 'vicuna':
    #     chat_state = default_conversation.copy()
    # else:
    chat_state = conv_llava_llama_2.copy()
    if gr_video is None:
        return None, None, None, gr.update(interactive=True), chat_state, None
    # elif gr_img is not None and gr_video is None:
    #     print(gr_img)
    #     chatbot = chatbot + [((gr_img,), None)]
    #     chat_state.system =  "You are able to understand the visual content that the user provides. Follow the instructions carefully and explain your answers in detail."
    #     img_list = []
    #     llm_message = chat.upload_img(gr_img, chat_state, img_list)
    #     return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list,chatbot
    elif gr_video is not None:
        print(gr_video)
        chatbot = chatbot + [((gr_video,), None)]
        chat_state.system =  "You are able to understand the visual content that the user provides. Follow the instructions carefully and explain your answers in detail."
        img_list = []
        #llm_message = chat.upload_video_without_audio(gr_video, chat_state, img_list)
        return gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list,chatbot
    # else:
    #     # img_list = []
    #     return gr.update(interactive=False), gr.update(interactive=False, placeholder='Currently, only one input is supported'), gr.update(value="Currently, only one input is supported", interactive=False), chat_state, None,chatbot

def gradio_ask(user_message, chatbot, chat_state):
    if len(user_message) == 0:
        return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
    chat.ask(user_message, chat_state)
    chatbot = chatbot + [[user_message, None]]
    return '', chatbot, chat_state

@spaces.GPU
def gradio_answer(video, chatbot, chat_state, img_list, num_beams, temperature):
    global have_video
    if have_video == 0:
        llm_message = chat.upload_video_without_audio(video, chat_state, img_list)
        have_video = 1
    llm_message = chat.answer(conv=chat_state,
                              img_list=img_list,
                              num_beams=num_beams,
                              temperature=temperature,
                              max_new_tokens=300,
                              max_length=2000)[0]
    chatbot[-1][1] = llm_message
    print(chat_state.get_prompt())
    print(chat_state)
    return chatbot, chat_state, []

title = """
<div align="center">
    <h1>Hawk: Learning to Understand Open-World Video Anomalies</h1>
</div>

<h5 align="center"> "Have eyes like a Hawk!" </h5> 

<div style="display: flex; justify-content: center; gap: 0.25rem;">
    <a href='https://github.com/jqtangust/hawk'>
        <img src='https://img.shields.io/badge/Github-Code-success' alt="GitHub Code">
    </a>
    <a href='https://huggingface.co/spaces/Jiaqi-hkust/hawk'>
        <img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue' alt="Hugging Face Spaces">
    </a>
    <a href='https://huggingface.co/spaces/Jiaqi-hkust/hawk'>
        <img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue' alt="Hugging Face Model">
    </a>
    <a href='https://arxiv.org/pdf/2405.16886'>
        <img src='https://img.shields.io/badge/Paper-PDF-red' alt="Download Paper">
    </a>
</div>

"""

cite_markdown = ("""
## Citation
The following is a BibTeX reference:
```
@inproceedings{atang2024hawk,
  title = {Hawk: Learning to Understand Open-World Video Anomalies},
  author = {Tang, Jiaqi and Lu, Hao and Wu, Ruizheng and Xu, Xiaogang and Ma, Ke and Fang, Cheng and Guo, Bin and Lu, Jiangbo and Chen, Qifeng and Chen, Ying-Cong},
  year = {2024},
  booktitle = {Neural Information Processing Systems (NeurIPS)}
}
""")

# case_note_upload = ("""
# ### We provide some examples at the bottom of the page. Simply click on them to try them out directly.
# """)

#TODO show examples below

with gr.Blocks() as demo:
    gr.Markdown(title)

    with gr.Row():
        with gr.Column(scale=0.5):
            video = gr.Video()
            # image = gr.Image(type="filepath")
            # gr.Markdown(case_note_upload)

            upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
            clear = gr.Button("Restart")
            
            num_beams = gr.Slider(
                minimum=1,
                maximum=10,
                value=1,
                step=1,
                interactive=True,
                label="beam search numbers)",
            )
            
            temperature = gr.Slider(
                minimum=0.1,
                maximum=2.0,
                value=1.0,
                step=0.1,
                interactive=True,
                label="Temperature",
            )
            # audio = gr.Checkbox(interactive=True, value=False, label="Audio")
        with gr.Column():
            chat_state = gr.State()
            img_list = gr.State()
            chatbot = gr.Chatbot(label='Hawk')
            text_input = gr.Textbox(label='User', placeholder='Upload your video first and start to chat.', interactive=False)
            

    with gr.Column():
        gr.Examples(examples=[
            [f"figs/examples/explosion2.mp4", "What happened in this video? "],
            [f"figs/examples/car.mp4", "What is the anomaly for the car in this video? "],
        ], inputs=[video, text_input])
        
    gr.Markdown(cite_markdown)
    upload_button.click(upload_imgorvideo, [video, text_input, chat_state, chatbot], [video, text_input, upload_button, chat_state, img_list, chatbot])
    
    start_time = time.time()
    text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
        gradio_answer, [video, chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
    )
    end_time = time.time()
    print('Time:', end_time - start_time)
    
    clear.click(gradio_reset, [chat_state, img_list], [chatbot, video, text_input, upload_button, chat_state, img_list], queue=False)
    
demo.launch()