""" Run the following command to start the demo: python demo_video.py \ --cfg-path /remote-home/share/jiaqitang/Hawk_Ours/configs/eval_configs/eval.yaml \ --model_type llama_v2 \ --gpu-id 0 """ import requests import argparse import os import random import subprocess import sys import io import spaces subprocess.check_call([sys.executable, "-m", "spacy", "download", "en_core_web_sm"]) import numpy as np import torch import torch.backends.cudnn as cudnn import gradio as gr from hawk.common.config import Config from hawk.common.dist_utils import get_rank from hawk.common.registry import registry from hawk.conversation.conversation_video import Chat, Conversation, default_conversation, SeparatorStyle,conv_llava_llama_2 import decord decord.bridge.set_bridge('torch') #%% # imports modules for registration from hawk.datasets.builders import * from hawk.models import * from hawk.processors import * from hawk.runners import * from hawk.tasks import * import time def parse_args(): parser = argparse.ArgumentParser(description="Demo") parser.add_argument("--cfg-path", required=False, default='./configs/eval_configs/eval.yaml', help="path to configuration file.") parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.") parser.add_argument("--model_type", type=str, default='llama_v2', help="The type of LLM") parser.add_argument( "--options", nargs="+", help="override some settings in the used config, the key-value pair " "in xxx=yyy format will be merged into config file (deprecate), " "change to --cfg-options instead.", ) args = parser.parse_args() return args def setup_seeds(config): seed = config.run_cfg.seed + get_rank() random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) cudnn.benchmark = False cudnn.deterministic = True # ======================================== # Model Initialization # ======================================== print('Initializing Chat') args = parse_args() cfg = Config(args) model_config = cfg.model_cfg model_config.device_8bit = args.gpu_id model_cls = registry.get_model_class(model_config.arch) # model = model_cls.from_config(model_config).to('cuda:{}'.format(args.gpu_id)) model = model_cls.from_config(model_config).to('cuda') model.eval() vis_processor_cfg = cfg.datasets_cfg.webvid.vis_processor.train vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg) # chat = Chat(model, vis_processor, device='cuda:{}'.format(args.gpu_id)) chat = Chat(model, vis_processor, device='cuda') print('Initialization Finished') have_video = 0 # ======================================== # Gradio Setting # ======================================== def gradio_reset(chat_state, img_list): global have_video have_video = 0 if chat_state is not None: chat_state.messages = [] if img_list is not None: img_list = [] return None, gr.update(value=None, interactive=True), gr.update(interactive=False),gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_list def upload_imgorvideo(gr_video, text_input, chat_state, chatbot): # if args.model_type == 'vicuna': # chat_state = default_conversation.copy() # else: chat_state = conv_llava_llama_2.copy() if gr_video is None: return None, None, None, gr.update(interactive=True), chat_state, None # elif gr_img is not None and gr_video is None: # print(gr_img) # chatbot = chatbot + [((gr_img,), None)] # chat_state.system = "You are able to understand the visual content that the user provides. Follow the instructions carefully and explain your answers in detail." # img_list = [] # llm_message = chat.upload_img(gr_img, chat_state, img_list) # return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list,chatbot elif gr_video is not None: print(gr_video) chatbot = chatbot + [((gr_video,), None)] chat_state.system = "You are able to understand the visual content that the user provides. Follow the instructions carefully and explain your answers in detail." img_list = [] #llm_message = chat.upload_video_without_audio(gr_video, chat_state, img_list) return gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list,chatbot # else: # # img_list = [] # return gr.update(interactive=False), gr.update(interactive=False, placeholder='Currently, only one input is supported'), gr.update(value="Currently, only one input is supported", interactive=False), chat_state, None,chatbot def gradio_ask(user_message, chatbot, chat_state): if len(user_message) == 0: return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state chat.ask(user_message, chat_state) chatbot = chatbot + [[user_message, None]] return '', chatbot, chat_state @spaces.GPU def gradio_answer(video, chatbot, chat_state, img_list, num_beams, temperature): global have_video if have_video == 0: llm_message = chat.upload_video_without_audio(video, chat_state, img_list) have_video = 1 llm_message = chat.answer(conv=chat_state, img_list=img_list, num_beams=num_beams, temperature=temperature, max_new_tokens=300, max_length=2000)[0] chatbot[-1][1] = llm_message print(chat_state.get_prompt()) print(chat_state) return chatbot, chat_state, [] title = """

Hawk: Learning to Understand Open-World Video Anomalies

"Have eyes like a Hawk!"
GitHub Code Hugging Face Spaces Hugging Face Model Download Paper
""" cite_markdown = (""" ## Citation The following is a BibTeX reference: ``` @inproceedings{atang2024hawk, title = {Hawk: Learning to Understand Open-World Video Anomalies}, author = {Tang, Jiaqi and Lu, Hao and Wu, Ruizheng and Xu, Xiaogang and Ma, Ke and Fang, Cheng and Guo, Bin and Lu, Jiangbo and Chen, Qifeng and Chen, Ying-Cong}, year = {2024}, booktitle = {Neural Information Processing Systems (NeurIPS)} } """) # case_note_upload = (""" # ### We provide some examples at the bottom of the page. Simply click on them to try them out directly. # """) #TODO show examples below with gr.Blocks() as demo: gr.Markdown(title) with gr.Row(): with gr.Column(scale=0.5): video = gr.Video() # image = gr.Image(type="filepath") # gr.Markdown(case_note_upload) upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary") clear = gr.Button("Restart") num_beams = gr.Slider( minimum=1, maximum=10, value=1, step=1, interactive=True, label="beam search numbers)", ) temperature = gr.Slider( minimum=0.1, maximum=2.0, value=1.0, step=0.1, interactive=True, label="Temperature", ) # audio = gr.Checkbox(interactive=True, value=False, label="Audio") with gr.Column(): chat_state = gr.State() img_list = gr.State() chatbot = gr.Chatbot(label='Hawk') text_input = gr.Textbox(label='User', placeholder='Upload your video first and start to chat.', interactive=False) with gr.Column(): gr.Examples(examples=[ [f"figs/examples/explosion2.mp4", "What happened in this video? "], [f"figs/examples/car.mp4", "What is the anomaly for the car in this video? "], ], inputs=[video, text_input]) gr.Markdown(cite_markdown) upload_button.click(upload_imgorvideo, [video, text_input, chat_state, chatbot], [video, text_input, upload_button, chat_state, img_list, chatbot]) start_time = time.time() text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then( gradio_answer, [video, chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list] ) end_time = time.time() print('Time:', end_time - start_time) clear.click(gradio_reset, [chat_state, img_list], [chatbot, video, text_input, upload_button, chat_state, img_list], queue=False) demo.launch()