File size: 4,179 Bytes
891c8f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import gradio as gr
import requests
import json
import os

BASE_URL = "https://api.jigsawstack.com/v1"
headers = {
    "x-api-key": os.getenv("JIGSAWSTACK_API_KEY")
}

def detect_objects(image_url=None, file_store_key=None):
    if not image_url and not file_store_key:
        return "❌ Please provide either an image URL or file store key.", [], "", ""

    if image_url and file_store_key:
        return "❌ Provide only one: image URL or file store key.", [], "", ""

    try:
        payload = {}
        if image_url:
            payload["url"] = image_url
        if file_store_key:
            payload["file_store_key"] = file_store_key

        response = requests.post(f"{BASE_URL}/ai/object_detection", headers=headers, json=payload)
        if response.status_code != 200:
            return f"❌ Error: {response.status_code} - {response.text}", [], "", ""

        result = response.json()
        if not result.get("success"):
            return "❌ Detection failed.", [], "", ""

        status = "βœ… Detection successful!"
        tags = result.get("tags", [])
        objects = result.get("objects", [])
        description = f"Image Size: {result.get('width')} x {result.get('height')}\n\n"

        for obj in objects:
            bounds = obj.get("bounds", {})
            bound_text = ""
            if bounds.get("top_left") and bounds.get("top_right"):
                tl = bounds["top_left"]
                tr = bounds["top_right"]
                bound_text = f"Bounds: ({tl['x']}, {tl['y']}) to ({tr['x']}, {tr['y']})"
            description += f"β€’ {obj['name']} (Confidence: {obj['confidence']:.2f})\n  {bound_text}\n"

        raw_json = json.dumps(result, indent=2)
        return status, tags, description.strip(), raw_json

    except Exception as e:
        return f"❌ Error: {str(e)}", [], "", ""

with gr.Blocks() as demo:
    gr.Markdown("""
    <div style='text-align: center; margin-bottom: 24px;'>
        <h1 style='font-size:2.2em; margin-bottom: 0.2em;'>🧩 Object Detection</h1>
        <p style='font-size:1.2em; margin-top: 0;'>Detect objects within images with great accuracy using AI models.</p>
        <p style='font-size:1em; margin-top: 0.5em;'>For more details and API usage, see the <a href='https://jigsawstack.com/docs/api-reference/ai/object-detection' target='_blank'>documentation</a>.</p>
    </div>
    """)

    with gr.Row():
        with gr.Column():
            input_type = gr.Radio(choices=["Image URL", "File Store Key"], value="Image URL", label="Input Type")
            image_url = gr.Textbox(label="Image URL", placeholder="https://example.com/image.jpg", visible=True)
            file_store_key = gr.Textbox(label="File Store Key", placeholder="my-image.jpg", visible=False)
            detect_btn = gr.Button("πŸ” Detect Objects")
            clear_btn = gr.Button("Clear")

        with gr.Column():
            status_box = gr.Textbox(label="Status", interactive=False)
            tag_display = gr.Label(label="Detected Tags")
            desc_display = gr.Textbox(label="Object Details", lines=10, interactive=False)
            json_box = gr.Accordion("Raw JSON Response", open=False)
            with json_box:
                json_output = gr.Textbox(show_label=False, lines=20, interactive=False)

    def toggle_inputs(choice):
        return (
            gr.update(visible=(choice == "Image URL")),
            gr.update(visible=(choice == "File Store Key"))
        )

    input_type.change(fn=toggle_inputs, inputs=input_type, outputs=[image_url, file_store_key])

    def on_detect(input_mode, url, key):
        if input_mode == "Image URL":
            return detect_objects(image_url=url.strip())
        else:
            return detect_objects(file_store_key=key.strip())

    detect_btn.click(fn=on_detect, inputs=[input_type, image_url, file_store_key],
                     outputs=[status_box, tag_display, desc_display, json_output])

    def clear_all():
        return "Image URL", "", "", "", "", ""

    clear_btn.click(fn=clear_all, inputs=[], outputs=[
        input_type, image_url, file_store_key, status_box, desc_display, json_output
    ])

demo.launch()