Spaces:
Running
Running
File size: 6,358 Bytes
891c8f0 c5edd31 891c8f0 c5edd31 891c8f0 c5edd31 891c8f0 c5edd31 891c8f0 c5edd31 891c8f0 c5edd31 891c8f0 c5edd31 891c8f0 c5edd31 891c8f0 c5edd31 891c8f0 c5edd31 891c8f0 c5edd31 891c8f0 c5edd31 891c8f0 c5edd31 891c8f0 c5edd31 891c8f0 c5edd31 891c8f0 c5edd31 891c8f0 c5edd31 891c8f0 c5edd31 891c8f0 c5edd31 891c8f0 c5edd31 891c8f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import gradio as gr
import requests
import json
import os
BASE_URL = "https://api.jigsawstack.com/v1"
headers = {
"x-api-key": os.getenv("JIGSAWSTACK_API_KEY")
}
def detect_objects(image_url=None, file_store_key=None, prompts=None, features=None, annotated_image=False):
if not image_url and not file_store_key:
return "β Please provide either an image URL or file store key.", "", "", None
if image_url and file_store_key:
return "β Provide only one: image URL or file store key.", "", "", None
try:
payload = {}
if image_url:
payload["url"] = image_url
if file_store_key:
payload["file_store_key"] = file_store_key
# Add optional parameters
if prompts:
payload["prompts"] = prompts
if features:
payload["features"] = features
# Always return annotated image
payload["annotated_image"] = True
# Always use url as return_type
payload["return_type"] = "url"
response = requests.post(f"{BASE_URL}/ai/object_detection", headers=headers, json=payload)
if response.status_code != 200:
return f"β Error: {response.status_code} - {response.text}", "", "", None
result = response.json()
if not result.get("success"):
return "β Detection failed.", "", "", None
status = "β
Detection successful!"
objects = result.get("objects", [])
annotated_image_url = result.get("annotated_image")
# Create description with object details
description = f"Image Size: {result.get('width', 'Unknown')} x {result.get('height', 'Unknown')}\n\n"
description += f"Total Objects Detected: {len(objects)}\n\n"
for i, obj in enumerate(objects):
bounds = obj.get("bounds", {})
label = obj.get("label", "Unknown")
bound_text = ""
if bounds:
width = bounds.get("width", "Unknown")
height = bounds.get("height", "Unknown")
top_left = bounds.get("top_left", {})
if top_left:
x, y = top_left.get("x", "?"), top_left.get("y", "?")
bound_text = f"Position: ({x}, {y}), Size: {width}x{height}"
description += f"β’ {label}\n {bound_text}\n"
raw_json = json.dumps(result, indent=2)
return status, description.strip(), raw_json, annotated_image_url
except Exception as e:
return f"β Error: {str(e)}", "", "", None
with gr.Blocks() as demo:
gr.Markdown("""
<div style='text-align: center; margin-bottom: 24px;'>
<h1 style='font-size:2.2em; margin-bottom: 0.2em;'>π§© Object Detection</h1>
<p style='font-size:1.2em; margin-top: 0;'>Detect objects within images with great accuracy using AI models.</p>
<p style='font-size:1em; margin-top: 0.5em;'>For more details and API usage, see the <a href='https://jigsawstack.com/docs/api-reference/ai/object-detection' target='_blank'>documentation</a>.</p>
</div>
""")
with gr.Row():
with gr.Column():
input_type = gr.Radio(choices=["Image URL", "File Store Key"], value="Image URL", label="Input Type")
image_url = gr.Textbox(label="Image URL", placeholder="https://example.com/image.jpg", visible=True)
file_store_key = gr.Textbox(label="File Store Key", placeholder="my-image.jpg", visible=False)
# Advanced options
prompts = gr.Textbox(label="Prompts (comma-separated)", placeholder="wine glass, bottle, cup", info="Targeted object detection prompts")
features = gr.CheckboxGroup(choices=["object_detection", "gui"], value=["object_detection"], label="Features")
annotated_image = gr.Checkbox(label="Return Annotated Image", value=True)
detect_btn = gr.Button("π Detect Objects")
clear_btn = gr.Button("Clear")
with gr.Column():
status_box = gr.Textbox(label="Status", interactive=False)
desc_display = gr.Textbox(label="Object Details", lines=10, interactive=False)
# Annotated image display
annotated_image_display = gr.Image(label="Annotated Image", visible=False)
json_box = gr.Accordion("Raw JSON Response", open=False)
with json_box:
json_output = gr.Textbox(show_label=False, lines=20, interactive=False)
def toggle_inputs(choice):
return (
gr.update(visible=(choice == "Image URL")),
gr.update(visible=(choice == "File Store Key"))
)
input_type.change(fn=toggle_inputs, inputs=input_type, outputs=[image_url, file_store_key])
def on_detect(input_mode, url, key, prompts_text, features_list, annotated):
# Parse prompts
prompts_list = None
if prompts_text.strip():
prompts_list = [p.strip() for p in prompts_text.split(",") if p.strip()]
if input_mode == "Image URL":
return detect_objects(
image_url=url.strip(),
prompts=prompts_list,
features=features_list,
annotated_image=annotated
)
else:
return detect_objects(
file_store_key=key.strip(),
prompts=prompts_list,
features=features_list,
annotated_image=annotated
)
def update_annotated_image_visibility(annotated):
return gr.update(visible=annotated)
detect_btn.click(fn=on_detect, inputs=[
input_type, image_url, file_store_key, prompts, features, annotated_image
], outputs=[status_box, desc_display, json_output, annotated_image_display])
annotated_image.change(fn=update_annotated_image_visibility, inputs=annotated_image, outputs=annotated_image_display)
def clear_all():
return "Image URL", "", "", "", "", ["object_detection"], False, "", "", "", None
clear_btn.click(fn=clear_all, inputs=[], outputs=[
input_type, image_url, file_store_key, prompts, features, annotated_image,
status_box, desc_display, json_output, annotated_image_display
])
demo.launch()
|