vineet124jig's picture
Update app.py
cda293e verified
raw
history blame
7.73 kB
import gradio as gr
import requests
import json
import os
import time
from collections import defaultdict
from PIL import Image
import io
BASE_URL = "https://api.jigsawstack.com/v1"
headers = {
"x-api-key": os.getenv("JIGSAWSTACK_API_KEY")
}
# Rate limiting configuration
request_times = defaultdict(list)
MAX_REQUESTS = 20 # Maximum requests per time window
TIME_WINDOW = 3600 # Time window in seconds (1 hour)
def get_real_ip(request: gr.Request):
"""Extract real IP address using x-forwarded-for header or fallback"""
if not request:
return "unknown"
forwarded = request.headers.get("x-forwarded-for")
if forwarded:
ip = forwarded.split(",")[0].strip() # First IP in the list is the client's
else:
ip = request.client.host # fallback
return ip
def check_rate_limit(request: gr.Request):
"""Check if the current request exceeds rate limits"""
if not request:
return True, "Rate limit check failed - no request info"
ip = get_real_ip(request)
now = time.time()
# Clean up old timestamps outside the time window
request_times[ip] = [t for t in request_times[ip] if now - t < TIME_WINDOW]
# Check if rate limit exceeded
if len(request_times[ip]) >= MAX_REQUESTS:
time_remaining = int(TIME_WINDOW - (now - request_times[ip][0]))
time_remaining_minutes = round(time_remaining / 60, 1)
time_window_minutes = round(TIME_WINDOW / 60, 1)
return False, f"Rate limit exceeded. You can make {MAX_REQUESTS} requests per {time_window_minutes} minutes. Try again in {time_remaining_minutes} minutes."
# Add current request timestamp
request_times[ip].append(now)
return True, ""
def detect_objects(request: gr.Request, image_url=None, file_store_key=None, prompts=None, features=None):
rate_limit_ok, rate_limit_msg = check_rate_limit(request)
if not rate_limit_ok:
return f"❌ {rate_limit_msg}", "", "", None
if not image_url and not file_store_key:
return "❌ Please provide either an image URL or file store key.", "", "", None
if image_url and file_store_key:
return "❌ Provide only one: image URL or file store key.", "", "", None
try:
payload = {}
if image_url:
payload["url"] = image_url
if file_store_key:
payload["file_store_key"] = file_store_key
# Add optional parameters
if prompts:
payload["prompts"] = prompts
if features:
payload["features"] = features
# Always return annotated image
payload["annotated_image"] = True
# Always use url as return_type
payload["return_type"] = "url"
response = requests.post(f"{BASE_URL}/ai/object_detection", headers=headers, json=payload)
if response.status_code != 200:
return f"❌ Error: {response.status_code} - {response.text}", "", "", None
result = response.json()
if not result.get("success"):
return "❌ Detection failed.", "", "", None
status = "βœ… Detection successful!"
objects = result.get("objects", [])
annotated_image_url = result.get("annotated_image")
# Create description with object details
description = f"Image Size: {result.get('width', 'Unknown')} x {result.get('height', 'Unknown')}\n\n"
description += f"Total Objects Detected: {len(objects)}\n\n"
for i, obj in enumerate(objects):
bounds = obj.get("bounds", {})
label = obj.get("label", "Unknown")
bound_text = ""
if bounds:
width = bounds.get("width", "Unknown")
height = bounds.get("height", "Unknown")
top_left = bounds.get("top_left", {})
if top_left:
x, y = top_left.get("x", "?"), top_left.get("y", "?")
bound_text = f"Position: ({x}, {y}), Size: {width}x{height}"
description += f"β€’ {label}\n {bound_text}\n"
raw_json = json.dumps(result, indent=2)
return status, description.strip(), raw_json, annotated_image_url
except Exception as e:
return f"❌ Error: {str(e)}", "", "", None
with gr.Blocks() as demo:
gr.Markdown("""
<div style='text-align: center; margin-bottom: 24px;'>
<h1 style='font-size:2.2em; margin-bottom: 0.2em;'>🧩 Object Detection</h1>
<p style='font-size:1.2em; margin-top: 0;'>Detect objects within images with great accuracy using AI models.</p>
<p style='font-size:1em; margin-top: 0.5em;'>For more details and API usage, see the <a href='https://jigsawstack.com/docs/api-reference/ai/object-detection' target='_blank'>documentation</a>.</p>
</div>
""")
with gr.Row():
with gr.Column():
input_type = gr.Radio(choices=["Image URL", "File Store Key"], value="Image URL", label="Input Type")
image_url = gr.Textbox(label="Image URL", placeholder="https://example.com/image.jpg", visible=True)
file_store_key = gr.Textbox(label="File Store Key", placeholder="my-image.jpg", visible=False)
# Advanced options
prompts = gr.Textbox(label="Prompts (comma-separated)", placeholder="wine glass, bottle, cup", info="Targeted object detection prompts")
features = gr.CheckboxGroup(choices=["object_detection", "gui"], value=["object_detection"], label="Features")
detect_btn = gr.Button("πŸ” Detect Objects")
clear_btn = gr.Button("Clear")
with gr.Column():
status_box = gr.Textbox(label="Status", interactive=False)
desc_display = gr.Textbox(label="Object Details", lines=10, interactive=False)
# Annotated image display - always visible
annotated_image_display = gr.Image(label="Annotated Image")
json_box = gr.Accordion("Raw JSON Response", open=False)
with json_box:
json_output = gr.Textbox(show_label=False, lines=20, interactive=False)
def toggle_inputs(choice):
return (
gr.update(visible=(choice == "Image URL")),
gr.update(visible=(choice == "File Store Key"))
)
input_type.change(fn=toggle_inputs, inputs=input_type, outputs=[image_url, file_store_key])
def on_detect(input_mode, url, key, prompts_text, features_list, request: gr.Request):
# Parse prompts
prompts_list = None
if prompts_text.strip():
prompts_list = [p.strip() for p in prompts_text.split(",") if p.strip()]
if input_mode == "Image URL":
return detect_objects(
request=request,
image_url=url.strip(),
prompts=prompts_list,
features=features_list
)
else:
return detect_objects(
request=request,
file_store_key=key.strip(),
prompts=prompts_list,
features=features_list
)
detect_btn.click(fn=on_detect, inputs=[
input_type, image_url, file_store_key, prompts, features
], outputs=[status_box, desc_display, json_output, annotated_image_display])
def clear_all():
return "Image URL", "", "", "", "", ["object_detection"], "", "", "", None
clear_btn.click(fn=clear_all, inputs=[], outputs=[
input_type, image_url, file_store_key, prompts, features,
status_box, desc_display, json_output, annotated_image_display
])
demo.launch()