import gradio as gr
import requests
import json
import os
BASE_URL = "https://api.jigsawstack.com/v1"
headers = {
"x-api-key": os.getenv("JIGSAWSTACK_API_KEY")
}
def detect_objects(image_url=None, file_store_key=None, prompts=None, features=None, annotated_image=False):
if not image_url and not file_store_key:
return "❌ Please provide either an image URL or file store key.", "", "", None
if image_url and file_store_key:
return "❌ Provide only one: image URL or file store key.", "", "", None
try:
payload = {}
if image_url:
payload["url"] = image_url
if file_store_key:
payload["file_store_key"] = file_store_key
# Add optional parameters
if prompts:
payload["prompts"] = prompts
if features:
payload["features"] = features
# Always return annotated image
payload["annotated_image"] = True
# Always use url as return_type
payload["return_type"] = "url"
response = requests.post(f"{BASE_URL}/ai/object_detection", headers=headers, json=payload)
if response.status_code != 200:
return f"❌ Error: {response.status_code} - {response.text}", "", "", None
result = response.json()
if not result.get("success"):
return "❌ Detection failed.", "", "", None
status = "✅ Detection successful!"
objects = result.get("objects", [])
annotated_image_url = result.get("annotated_image")
# Create description with object details
description = f"Image Size: {result.get('width', 'Unknown')} x {result.get('height', 'Unknown')}\n\n"
description += f"Total Objects Detected: {len(objects)}\n\n"
for i, obj in enumerate(objects):
bounds = obj.get("bounds", {})
label = obj.get("label", "Unknown")
bound_text = ""
if bounds:
width = bounds.get("width", "Unknown")
height = bounds.get("height", "Unknown")
top_left = bounds.get("top_left", {})
if top_left:
x, y = top_left.get("x", "?"), top_left.get("y", "?")
bound_text = f"Position: ({x}, {y}), Size: {width}x{height}"
description += f"• {label}\n {bound_text}\n"
raw_json = json.dumps(result, indent=2)
return status, description.strip(), raw_json, annotated_image_url
except Exception as e:
return f"❌ Error: {str(e)}", "", "", None
with gr.Blocks() as demo:
gr.Markdown("""
🧩 Object Detection
Detect objects within images with great accuracy using AI models.
For more details and API usage, see the documentation.
""")
with gr.Row():
with gr.Column():
input_type = gr.Radio(choices=["Image URL", "File Store Key"], value="Image URL", label="Input Type")
image_url = gr.Textbox(label="Image URL", placeholder="https://example.com/image.jpg", visible=True)
file_store_key = gr.Textbox(label="File Store Key", placeholder="my-image.jpg", visible=False)
# Advanced options
prompts = gr.Textbox(label="Prompts (comma-separated)", placeholder="wine glass, bottle, cup", info="Targeted object detection prompts")
features = gr.CheckboxGroup(choices=["object_detection", "gui"], value=["object_detection"], label="Features")
annotated_image = gr.Checkbox(label="Return Annotated Image", value=True)
detect_btn = gr.Button("🔍 Detect Objects")
clear_btn = gr.Button("Clear")
with gr.Column():
status_box = gr.Textbox(label="Status", interactive=False)
desc_display = gr.Textbox(label="Object Details", lines=10, interactive=False)
# Annotated image display
annotated_image_display = gr.Image(label="Annotated Image", visible=False)
json_box = gr.Accordion("Raw JSON Response", open=False)
with json_box:
json_output = gr.Textbox(show_label=False, lines=20, interactive=False)
def toggle_inputs(choice):
return (
gr.update(visible=(choice == "Image URL")),
gr.update(visible=(choice == "File Store Key"))
)
input_type.change(fn=toggle_inputs, inputs=input_type, outputs=[image_url, file_store_key])
def on_detect(input_mode, url, key, prompts_text, features_list, annotated):
# Parse prompts
prompts_list = None
if prompts_text.strip():
prompts_list = [p.strip() for p in prompts_text.split(",") if p.strip()]
if input_mode == "Image URL":
return detect_objects(
image_url=url.strip(),
prompts=prompts_list,
features=features_list,
annotated_image=annotated
)
else:
return detect_objects(
file_store_key=key.strip(),
prompts=prompts_list,
features=features_list,
annotated_image=annotated
)
def update_annotated_image_visibility(annotated):
return gr.update(visible=annotated)
detect_btn.click(fn=on_detect, inputs=[
input_type, image_url, file_store_key, prompts, features, annotated_image
], outputs=[status_box, desc_display, json_output, annotated_image_display])
annotated_image.change(fn=update_annotated_image_visibility, inputs=annotated_image, outputs=annotated_image_display)
def clear_all():
return "Image URL", "", "", "", "", ["object_detection"], False, "", "", "", None
clear_btn.click(fn=clear_all, inputs=[], outputs=[
input_type, image_url, file_store_key, prompts, features, annotated_image,
status_box, desc_display, json_output, annotated_image_display
])
demo.launch()