import gradio as gr import requests import json import os BASE_URL = "https://api.jigsawstack.com/v1" headers = { "x-api-key": os.getenv("JIGSAWSTACK_API_KEY") } def detect_objects(image_url=None, file_store_key=None): if not image_url and not file_store_key: return "❌ Please provide either an image URL or file store key.", [], "", "" if image_url and file_store_key: return "❌ Provide only one: image URL or file store key.", [], "", "" try: payload = {} if image_url: payload["url"] = image_url if file_store_key: payload["file_store_key"] = file_store_key response = requests.post(f"{BASE_URL}/ai/object_detection", headers=headers, json=payload) if response.status_code != 200: return f"❌ Error: {response.status_code} - {response.text}", [], "", "" result = response.json() if not result.get("success"): return "❌ Detection failed.", [], "", "" status = "✅ Detection successful!" tags = result.get("tags", []) objects = result.get("objects", []) description = f"Image Size: {result.get('width')} x {result.get('height')}\n\n" for obj in objects: bounds = obj.get("bounds", {}) bound_text = "" if bounds.get("top_left") and bounds.get("top_right"): tl = bounds["top_left"] tr = bounds["top_right"] bound_text = f"Bounds: ({tl['x']}, {tl['y']}) to ({tr['x']}, {tr['y']})" description += f"• {obj['name']} (Confidence: {obj['confidence']:.2f})\n {bound_text}\n" raw_json = json.dumps(result, indent=2) return status, tags, description.strip(), raw_json except Exception as e: return f"❌ Error: {str(e)}", [], "", "" with gr.Blocks() as demo: gr.Markdown("""

🧩 Object Detection

Detect objects within images with great accuracy using AI models.

For more details and API usage, see the documentation.

""") with gr.Row(): with gr.Column(): input_type = gr.Radio(choices=["Image URL", "File Store Key"], value="Image URL", label="Input Type") image_url = gr.Textbox(label="Image URL", placeholder="https://example.com/image.jpg", visible=True) file_store_key = gr.Textbox(label="File Store Key", placeholder="my-image.jpg", visible=False) detect_btn = gr.Button("🔍 Detect Objects") clear_btn = gr.Button("Clear") with gr.Column(): status_box = gr.Textbox(label="Status", interactive=False) tag_display = gr.Label(label="Detected Tags") desc_display = gr.Textbox(label="Object Details", lines=10, interactive=False) json_box = gr.Accordion("Raw JSON Response", open=False) with json_box: json_output = gr.Textbox(show_label=False, lines=20, interactive=False) def toggle_inputs(choice): return ( gr.update(visible=(choice == "Image URL")), gr.update(visible=(choice == "File Store Key")) ) input_type.change(fn=toggle_inputs, inputs=input_type, outputs=[image_url, file_store_key]) def on_detect(input_mode, url, key): if input_mode == "Image URL": return detect_objects(image_url=url.strip()) else: return detect_objects(file_store_key=key.strip()) detect_btn.click(fn=on_detect, inputs=[input_type, image_url, file_store_key], outputs=[status_box, tag_display, desc_display, json_output]) def clear_all(): return "Image URL", "", "", "", "", "" clear_btn.click(fn=clear_all, inputs=[], outputs=[ input_type, image_url, file_store_key, status_box, desc_display, json_output ]) demo.launch()