import gradio as gr import requests import json import os import pandas as pd BASE_URL = "https://api.jigsawstack.com/v1" headers = { "x-api-key": os.getenv("JIGSAWSTACK_API_KEY") } def analyze_sentiment(text): if not text or not text.strip(): return "Error: Text input is required.", None, None, None, None try: response = requests.post( f"{BASE_URL}/ai/sentiment", headers=headers, json={"text": text.strip()} ) response.raise_for_status() result = response.json() if not result.get("success"): error_msg = f"Error: API call failed - {result.get('message', 'Unknown error')}" return error_msg, None, None, None, None sentiment_data = result.get("sentiment", {}) overall_emotion = sentiment_data.get("emotion", "N/A") overall_sentiment = sentiment_data.get("sentiment", "N/A") overall_score = sentiment_data.get("score", "N/A") sentences = sentiment_data.get("sentences", []) if sentences: sentence_df = pd.DataFrame(sentences) sentence_df = sentence_df[['text', 'emotion', 'sentiment', 'score']] sentence_df.rename(columns={'text': 'Sentence', 'emotion': 'Emotion', 'sentiment': 'Sentiment', 'score': 'Score'}, inplace=True) else: sentence_df = pd.DataFrame(columns=['Sentence', 'Emotion', 'Sentiment', 'Score']) status_message = "✅ Sentiment analysis complete." return status_message, overall_emotion, overall_sentiment, str(overall_score), sentence_df except requests.exceptions.RequestException as e: return f"Request failed: {str(e)}", None, None, None, None except Exception as e: return f"An unexpected error occurred: {str(e)}", None, None, None, None with gr.Blocks() as demo: gr.Markdown("""

🧩 Analyze Sentiment

Perform line-by-line sentiment analysis on any text with detailed emotion detection.

For more details and API usage, see the documentation.

""") with gr.Row(): with gr.Column(): gr.Markdown("#### Input Text") sentiment_text = gr.Textbox( label="Text to Analyze", lines=8, placeholder="Enter the text you want to analyze here..." ) sentiment_btn = gr.Button("Analyze Sentiment", variant="primary") with gr.Column(): gr.Markdown("#### Overall Analysis") sentiment_status = gr.Textbox(label="Status", interactive=False) sentiment_emotion = gr.Textbox(label="Overall Emotion", interactive=False) sentiment_sentiment = gr.Textbox(label="Overall Sentiment", interactive=False) sentiment_score = gr.Textbox(label="Overall Score", interactive=False) gr.Markdown("#### Sentence-Level Breakdown") sentiment_sentences_df = gr.DataFrame(label="Sentence Analysis") sentiment_btn.click( analyze_sentiment, inputs=[sentiment_text], outputs=[sentiment_status, sentiment_emotion, sentiment_sentiment, sentiment_score, sentiment_sentences_df] ) demo.launch()