File size: 2,743 Bytes
a32dacf
 
 
 
 
 
 
 
 
1ef2c6a
 
5379e57
 
 
fd0d231
5379e57
9c3e3cf
5379e57
 
 
 
 
 
83702df
5379e57
 
 
83702df
9c3e3cf
5379e57
1ef2c6a
5379e57
 
9c3e3cf
83702df
5379e57
83702df
5379e57
83702df
5379e57
83702df
5379e57
 
 
 
9c3e3cf
 
 
 
 
69a70da
83702df
 
 
 
 
9c3e3cf
 
 
5379e57
 
 
 
 
0a5568a
83702df
5379e57
 
 
 
9c3e3cf
fd0d231
0a5568a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# Check for PyTorch installation
try:
    import torch
    print(f"PyTorch version: {torch.__version__}")
except ImportError:
    print("PyTorch is not installed. Please install PyTorch to run this script.")
    raise

from transformers import pipeline
import gradio as gr

# Initialize models as None
model1 = None
model2 = None

# Attempt to load the models and run test predictions
try:
    model1_name = "JimminDev/jim-text-class"
    model2_name = "JimminDev/Depressive-detector"
    print("Loading models...")
    
    model1 = pipeline("text-classification", model=model1_name)
    test_output1 = model1("Testing the first model with a simple sentence.")
    print("Harassment Detector test output:", test_output1)
    
    model2 = pipeline("text-classification", model=model2_name)
    test_output2 = model2("Testing the second model with a simple sentence.")
    print("Depressive Detector test output:", test_output2)
except Exception as e:
    print(f"Failed to load or run models: {e}")

# Prediction function with model selection and error handling
def predict_sentiment(text, model_choice):
    try:
        if model_choice == "Harassment Detector":
            if model1 is None:
                raise ValueError("Harassment Detector not loaded.")
            predictions = model1(text)
        elif model_choice == "Depressive Detector":
            if model2 is None:
                raise ValueError("Depressive Detector not loaded.")
            predictions = model2(text)
        else:
            raise ValueError("Invalid model choice.")
        
        return f"Label: {predictions[0]['label']}, Score: {predictions[0]['score']:.4f}"
    except Exception as e:
        return f"Error processing input: {e}"

# Define example inputs
examples = [
    ["I absolutely love this product! It has changed my life.", "Harassment Detector"],
    ["This is the worst movie I have ever seen. Completely disappointing.", "Harassment Detector"],
    ["I'm not sure how I feel about this new update. It has some good points, but also many drawbacks.", "Depressive Detector"],
    ["The customer service was fantastic! Very helpful and polite.", "Depressive Detector"],
    ["Honestly, this was quite a mediocre experience. Nothing special.", "Harassment Detector"]
]

# Gradio interface setup
iface = gr.Interface(
    fn=predict_sentiment,
    title="Sentiment Analysis",
    description="Enter text to analyze sentiment. Powered by Hugging Face Transformers.",
    inputs=[
        gr.Textbox(lines=2, placeholder="Enter text here..."),
        gr.Radio(choices=["Harassment Detector", "Depressive Detector"], label="Select Model")
    ],
    outputs="text",
    examples=examples
)

if __name__ == "__main__":
    iface.launch()