Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,7 @@
|
|
1 |
import os
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
-
import
|
5 |
-
import secrets
|
6 |
-
from pathlib import Path
|
7 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, BlipForConditionalGeneration, AutoProcessor, Qwen2VLForConditionalGeneration
|
8 |
from qwen_vl_utils import process_vision_info
|
9 |
from PIL import Image
|
10 |
|
@@ -12,9 +9,6 @@ from PIL import Image
|
|
12 |
vl_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
13 |
"Qwen/Qwen2-VL-2B-Instruct", torch_dtype="auto", device_map="auto"
|
14 |
)
|
15 |
-
Qwen2VLForConditionalGeneration.from_pretrained(
|
16 |
-
"Qwen/Qwen2-VL-2B-Instruct", torch_dtype="auto", device_map="auto"
|
17 |
-
)
|
18 |
vl_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
|
19 |
|
20 |
# Load Text Model
|
@@ -25,27 +19,19 @@ tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
25 |
|
26 |
math_messages = []
|
27 |
|
28 |
-
def process_image(image,
|
29 |
global math_messages
|
30 |
math_messages = [] # Reset when uploading an image
|
31 |
|
32 |
-
if
|
33 |
new_img = Image.new('RGB', size=(image.width, image.height), color=(255, 255, 255))
|
34 |
new_img.paste(image, (0, 0), mask=image)
|
35 |
image = new_img
|
36 |
|
37 |
-
|
38 |
-
inputs = vl_processor(images=image, return_tensors="pt")
|
39 |
generated_ids = vl_model.generate(**inputs)
|
40 |
-
|
41 |
-
|
42 |
-
]
|
43 |
-
output = processor.batch_decode(
|
44 |
-
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
45 |
-
)
|
46 |
-
description = vl_processor.batch_decode(output, skip_special_tokens=True)[0]
|
47 |
-
|
48 |
-
return f"Math-related content detected: {description}"
|
49 |
|
50 |
def get_math_response(image_description, user_question):
|
51 |
global math_messages
|
@@ -55,21 +41,23 @@ def get_math_response(image_description, user_question):
|
|
55 |
content = f'Image description: {image_description}\n\n' if image_description else ''
|
56 |
query = f"{content}User question: {user_question}"
|
57 |
math_messages.append({'role': 'user', 'content': query})
|
|
|
58 |
model_inputs = tokenizer(query, return_tensors="pt").to(device)
|
59 |
output = model.generate(**model_inputs, max_new_tokens=512)
|
60 |
answer = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
61 |
yield answer.replace("\\", "\\\\")
|
62 |
math_messages.append({'role': 'assistant', 'content': answer})
|
63 |
|
64 |
def math_chat_bot(image, sketchpad, question, state):
|
65 |
current_tab_index = state["tab_index"]
|
66 |
image_description = None
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
elif current_tab_index == 1:
|
71 |
-
|
72 |
-
|
73 |
yield from get_math_response(image_description, question)
|
74 |
|
75 |
css = """
|
@@ -81,67 +69,41 @@ css = """
|
|
81 |
def tabs_select(e: gr.SelectData, _state):
|
82 |
_state["tab_index"] = e.index
|
83 |
|
84 |
-
|
85 |
-
# 创建Gradio接口
|
86 |
with gr.Blocks(css=css) as demo:
|
87 |
-
gr.HTML("""
|
88 |
-
<p align="center"><img src="https://modelscope.oss-cn-beijing.aliyuncs.com/resource/qwen.png" style="height: 60px"
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
state = gr.State({"tab_index": 0})
|
|
|
94 |
with gr.Row():
|
95 |
with gr.Column():
|
96 |
with gr.Tabs() as input_tabs:
|
97 |
with gr.Tab("Upload"):
|
98 |
-
input_image = gr.Image(type="pil", label="Upload")
|
99 |
with gr.Tab("Sketch"):
|
100 |
-
input_sketchpad = gr.Sketchpad(
|
|
|
101 |
input_tabs.select(fn=tabs_select, inputs=[state])
|
102 |
-
input_text = gr.Textbox(label="
|
|
|
103 |
with gr.Row():
|
104 |
with gr.Column():
|
105 |
-
clear_btn = gr.ClearButton(
|
106 |
-
[*input_image, input_sketchpad, input_text])
|
107 |
with gr.Column():
|
108 |
submit_btn = gr.Button("Submit", variant="primary")
|
|
|
109 |
with gr.Column():
|
110 |
-
output_md = gr.Markdown(label="
|
111 |
-
|
112 |
-
"left": "\\(",
|
113 |
-
"right": "\\)",
|
114 |
-
"display": True
|
115 |
-
}, {
|
116 |
-
"left": "\\begin\{equation\}",
|
117 |
-
"right": "\\end\{equation\}",
|
118 |
-
"display": True
|
119 |
-
}, {
|
120 |
-
"left": "\\begin\{align\}",
|
121 |
-
"right": "\\end\{align\}",
|
122 |
-
"display": True
|
123 |
-
}, {
|
124 |
-
"left": "\\begin\{alignat\}",
|
125 |
-
"right": "\\end\{alignat\}",
|
126 |
-
"display": True
|
127 |
-
}, {
|
128 |
-
"left": "\\begin\{gather\}",
|
129 |
-
"right": "\\end\{gather\}",
|
130 |
-
"display": True
|
131 |
-
}, {
|
132 |
-
"left": "\\begin\{CD\}",
|
133 |
-
"right": "\\end\{CD\}",
|
134 |
-
"display": True
|
135 |
-
}, {
|
136 |
-
"left": "\\[",
|
137 |
-
"right": "\\]",
|
138 |
-
"display": True
|
139 |
-
}],
|
140 |
-
elem_id="qwen-md")
|
141 |
submit_btn.click(
|
142 |
fn=math_chat_bot,
|
143 |
-
inputs=[
|
144 |
-
outputs=output_md
|
145 |
-
|
|
|
146 |
if __name__ == "__main__":
|
147 |
demo.launch()
|
|
|
1 |
import os
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor, Qwen2VLForConditionalGeneration
|
|
|
|
|
|
|
5 |
from qwen_vl_utils import process_vision_info
|
6 |
from PIL import Image
|
7 |
|
|
|
9 |
vl_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
10 |
"Qwen/Qwen2-VL-2B-Instruct", torch_dtype="auto", device_map="auto"
|
11 |
)
|
|
|
|
|
|
|
12 |
vl_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
|
13 |
|
14 |
# Load Text Model
|
|
|
19 |
|
20 |
math_messages = []
|
21 |
|
22 |
+
def process_image(image, should_convert=False):
|
23 |
global math_messages
|
24 |
math_messages = [] # Reset when uploading an image
|
25 |
|
26 |
+
if should_convert:
|
27 |
new_img = Image.new('RGB', size=(image.width, image.height), color=(255, 255, 255))
|
28 |
new_img.paste(image, (0, 0), mask=image)
|
29 |
image = new_img
|
30 |
|
31 |
+
inputs = vl_processor(images=image, return_tensors="pt").to(device)
|
|
|
32 |
generated_ids = vl_model.generate(**inputs)
|
33 |
+
output = vl_processor.batch_decode(generated_ids, skip_special_tokens=True)
|
34 |
+
return f"Math-related content detected: {output[0]}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
def get_math_response(image_description, user_question):
|
37 |
global math_messages
|
|
|
41 |
content = f'Image description: {image_description}\n\n' if image_description else ''
|
42 |
query = f"{content}User question: {user_question}"
|
43 |
math_messages.append({'role': 'user', 'content': query})
|
44 |
+
|
45 |
model_inputs = tokenizer(query, return_tensors="pt").to(device)
|
46 |
output = model.generate(**model_inputs, max_new_tokens=512)
|
47 |
answer = tokenizer.decode(output[0], skip_special_tokens=True)
|
48 |
+
|
49 |
yield answer.replace("\\", "\\\\")
|
50 |
math_messages.append({'role': 'assistant', 'content': answer})
|
51 |
|
52 |
def math_chat_bot(image, sketchpad, question, state):
|
53 |
current_tab_index = state["tab_index"]
|
54 |
image_description = None
|
55 |
+
|
56 |
+
if current_tab_index == 0 and image is not None:
|
57 |
+
image_description = process_image(image)
|
58 |
+
elif current_tab_index == 1 and sketchpad and sketchpad["composite"]:
|
59 |
+
image_description = process_image(sketchpad["composite"], True)
|
60 |
+
|
61 |
yield from get_math_response(image_description, question)
|
62 |
|
63 |
css = """
|
|
|
69 |
def tabs_select(e: gr.SelectData, _state):
|
70 |
_state["tab_index"] = e.index
|
71 |
|
72 |
+
# Create Gradio UI
|
|
|
73 |
with gr.Blocks(css=css) as demo:
|
74 |
+
gr.HTML("""
|
75 |
+
<p align="center"><img src="https://modelscope.oss-cn-beijing.aliyuncs.com/resource/qwen.png" style="height: 60px"/></p>
|
76 |
+
<center><font size=8>📖 Qwen2-Math Demo</font></center>
|
77 |
+
<center><font size=3>This WebUI is based on Qwen2-VL for OCR and Qwen2-Math for mathematical reasoning. You can input either images or texts of mathematical or arithmetic problems.</font></center>
|
78 |
+
""")
|
79 |
+
|
80 |
state = gr.State({"tab_index": 0})
|
81 |
+
|
82 |
with gr.Row():
|
83 |
with gr.Column():
|
84 |
with gr.Tabs() as input_tabs:
|
85 |
with gr.Tab("Upload"):
|
86 |
+
input_image = gr.Image(type="pil", label="Upload")
|
87 |
with gr.Tab("Sketch"):
|
88 |
+
input_sketchpad = gr.Sketchpad(label="Sketch", layers=False)
|
89 |
+
|
90 |
input_tabs.select(fn=tabs_select, inputs=[state])
|
91 |
+
input_text = gr.Textbox(label="Input your question")
|
92 |
+
|
93 |
with gr.Row():
|
94 |
with gr.Column():
|
95 |
+
clear_btn = gr.ClearButton([input_image, input_sketchpad, input_text])
|
|
|
96 |
with gr.Column():
|
97 |
submit_btn = gr.Button("Submit", variant="primary")
|
98 |
+
|
99 |
with gr.Column():
|
100 |
+
output_md = gr.Markdown(label="Answer", elem_id="qwen-md")
|
101 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
submit_btn.click(
|
103 |
fn=math_chat_bot,
|
104 |
+
inputs=[input_image, input_sketchpad, input_text, state],
|
105 |
+
outputs=output_md
|
106 |
+
)
|
107 |
+
|
108 |
if __name__ == "__main__":
|
109 |
demo.launch()
|