Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,214 Bytes
7673e3b 4a6e66f 7673e3b 775fe95 7673e3b 775fe95 7673e3b 4a6e66f 7673e3b 4a6e66f 7673e3b 4a6e66f 775fe95 4a6e66f 7673e3b 4a6e66f 7673e3b 4a6e66f 7673e3b 4a6e66f 7673e3b 4a6e66f 7673e3b 4a6e66f 7673e3b 4a6e66f 7673e3b 4a6e66f 7673e3b 4a6e66f 7673e3b 2ddef9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
### ----------------- ###
# Standard library imports
import os
import re
import sys
import copy
import warnings
from typing import Optional
# Third-party imports
import numpy as np
import torch
import torch.distributed as dist
import uvicorn
import librosa
import whisper
import requests
from fastapi import FastAPI
from pydantic import BaseModel
from decord import VideoReader, cpu
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import spaces
# Local imports
from egogpt.model.builder import load_pretrained_model
from egogpt.mm_utils import get_model_name_from_path, process_images
from egogpt.constants import (
IMAGE_TOKEN_INDEX,
DEFAULT_IMAGE_TOKEN,
IGNORE_INDEX,
SPEECH_TOKEN_INDEX,
DEFAULT_SPEECH_TOKEN
)
from egogpt.conversation import conv_templates, SeparatorStyle
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# pretrained = "/mnt/sfs-common/jkyang/EgoGPT/checkpoints/EgoGPT-llavaov-7b-EgoIT-109k-release"
# pretrained = "/mnt/sfs-common/jkyang/EgoGPT/checkpoints/EgoGPT-llavaov-7b-EgoIT-EgoLife-Demo"
pretrained = '/EgoLife-v1/EgoGPT'
device = "cuda"
device_map = "cuda"
# Add this initialization code before loading the model
def setup(rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12377'
# initialize the process group
dist.init_process_group("gloo", rank=rank, world_size=world_size)
setup(0,1)
tokenizer, model, max_length = load_pretrained_model(pretrained,device_map=device_map)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device).eval()
title_markdown = """
<div style="display: flex; justify-content: space-between; align-items: center; background: linear-gradient(90deg, rgba(72,219,251,0.1), rgba(29,209,161,0.1)); border-radius: 20px; box-shadow: 0 4px 6px rgba(0,0,0,0.1); padding: 20px; margin-bottom: 20px;">
<div style="display: flex; align-items: center;">
<a href="https://egolife-ntu.github.io/" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
<img src="https://egolife-ntu.github.io/egolife.png" alt="EgoLife" style="max-width: 100px; height: auto; border-radius: 15px; box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
</a>
<div>
<h1 style="margin: 0; background: linear-gradient(90deg, #48dbfb, #1dd1a1); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-size: 2.5em; font-weight: 700;">EgoLife</h1>
<h2 style="margin: 10px 0; color: #2d3436; font-weight: 500;">Towards Egocentric Life Assistant</h2>
<div style="display: flex; gap: 15px; margin-top: 10px;">
<a href="https://egolife-ntu.github.io/" style="text-decoration: none; color: #48dbfb; font-weight: 500; transition: color 0.3s;">Project Page</a> |
<a href="https://github.com/egolife-ntu/EgoGPT" style="text-decoration: none; color: #48dbfb; font-weight: 500; transition: color 0.3s;">Github</a> |
<a href="https://huggingface.co/lmms-lab" style="text-decoration: none; color: #48dbfb; font-weight: 500; transition: color 0.3s;">Huggingface</a> |
<a href="https://arxiv.org/" style="text-decoration: none; color: #48dbfb; font-weight: 500; transition: color 0.3s;">Paper</a> |
<a href="https://x.com/" style="text-decoration: none; color: #48dbfb; font-weight: 500; transition: color 0.3s;">Twitter (X)</a>
</div>
</div>
</div>
<div style="text-align: right; margin-left: 20px;">
<h1 style="margin: 0; background: linear-gradient(90deg, #48dbfb, #1dd1a1); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-size: 2.5em; font-weight: 700;">EgoGPT</h1>
<h2 style="margin: 10px 0; background: linear-gradient(90deg, #48dbfb, #1dd1a1); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-size: 1.8em; font-weight: 600;">An Egocentric Video-Audio-Text Model<br>from EgoLife Project</h2>
</div>
</div>
"""
bibtext = """
### Citation
```
@article{yang2025egolife,
title={EgoLife\: Towards Egocentric Life Assistant},
author={The EgoLife Team},
journal={arXiv preprint arXiv:25xxx},
year={2025}
}
```
"""
# cur_dir = os.path.dirname(os.path.abspath(__file__))
cur_dir = ''
def time_to_frame_idx(time_int: int, fps: int) -> int:
"""
Convert time in HHMMSSFF format (integer or string) to frame index.
:param time_int: Time in HHMMSSFF format, e.g., 10483000 (10:48:30.00) or "10483000".
:param fps: Frames per second of the video.
:return: Frame index corresponding to the given time.
"""
# Ensure time_int is a string for slicing
time_str = str(time_int).zfill(
8) # Pad with zeros if necessary to ensure it's 8 digits
hours = int(time_str[:2])
minutes = int(time_str[2:4])
seconds = int(time_str[4:6])
frames = int(time_str[6:8])
total_seconds = hours * 3600 + minutes * 60 + seconds
total_frames = total_seconds * fps + frames # Convert to total frames
return total_frames
def split_text(text, keywords):
# 创建一个正则表达式模式,将所有关键词用 | 连接,并使用捕获组
pattern = '(' + '|'.join(map(re.escape, keywords)) + ')'
# 使用 re.split 保留分隔符
parts = re.split(pattern, text)
# 去除空字符串
parts = [part for part in parts if part]
return parts
warnings.filterwarnings("ignore")
# Create FastAPI instance
app = FastAPI()
def load_video(
video_path: Optional[str] = None,
max_frames_num: int = 16,
fps: int = 1,
video_start_time: Optional[float] = None,
start_time: Optional[float] = None,
end_time: Optional[float] = None,
time_based_processing: bool = False
) -> tuple:
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
target_sr = 16000
# Add new time-based processing logic
if time_based_processing:
# Initialize video reader
vr = decord.VideoReader(video_path, ctx=decord.cpu(0), num_threads=1)
total_frame_num = len(vr)
# Get the actual FPS of the video
video_fps = vr.get_avg_fps()
# Convert time to frame index based on the actual video FPS
video_start_frame = int(time_to_frame_idx(video_start_time, video_fps))
start_frame = int(time_to_frame_idx(start_time, video_fps))
end_frame = int(time_to_frame_idx(end_time, video_fps))
print("start frame", start_frame)
print("end frame", end_frame)
# Ensure the end time does not exceed the total frame number
if end_frame - start_frame > total_frame_num:
end_frame = total_frame_num + start_frame
# Adjust start_frame and end_frame based on video start time
start_frame -= video_start_frame
end_frame -= video_start_frame
start_frame = max(0, int(round(start_frame))) # 确保不会小于0
end_frame = min(total_frame_num, int(round(end_frame))) # 确保不会超过总帧数
start_frame = int(round(start_frame))
end_frame = int(round(end_frame))
# Sample frames based on the provided fps (e.g., 1 frame per second)
frame_idx = [i for i in range(start_frame, end_frame) if (i - start_frame) % int(video_fps / fps) == 0]
# Get the video frames for the sampled indices
video = vr.get_batch(frame_idx).asnumpy()
target_sr = 16000 # Set target sample rate to 16kHz
# Load audio from video with resampling
y, _ = librosa.load(video_path, sr=target_sr)
# Convert time to audio samples (using 16kHz sample rate)
start_sample = int(start_time * target_sr)
end_sample = int(end_time * target_sr)
# Extract audio segment
speech = y[start_sample:end_sample]
else:
# Original processing logic
speech, _ = librosa.load(video_path, sr=target_sr)
total_frame_num = len(vr)
avg_fps = round(vr.get_avg_fps() / fps)
frame_idx = [i for i in range(0, total_frame_num, avg_fps)]
if max_frames_num > 0:
if len(frame_idx) > max_frames_num:
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, max_frames_num, dtype=int)
frame_idx = uniform_sampled_frames.tolist()
video = vr.get_batch(frame_idx).asnumpy()
# Process audio
speech = whisper.pad_or_trim(speech.astype(np.float32))
speech = whisper.log_mel_spectrogram(speech, n_mels=128).permute(1, 0)
speech_lengths = torch.LongTensor([speech.shape[0]])
return video, speech, speech_lengths
class PromptRequest(BaseModel):
prompt: str
video_path: str = None
max_frames_num: int = 16
fps: int = 1
video_start_time: float = None
start_time: float = None
end_time: float = None
time_based_processing: bool = False
# @spaces.GPU(duration=120)
def generate_text(video_path, audio_track, prompt):
max_frames_num = 30
fps = 1
# model.eval()
# Video + speech branch
conv_template = "qwen_1_5" # Make sure you use correct chat template for different models
question = f"<image>\n{prompt}"
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
video, speech, speech_lengths = load_video(
video_path=video_path,
max_frames_num=max_frames_num,
fps=fps,
)
speech=torch.stack([speech]).to("cuda").half()
processor = model.get_vision_tower().image_processor
processed_video = processor.preprocess(video, return_tensors="pt")["pixel_values"]
image = [(processed_video, video[0].size, "video")]
print(prompt_question)
parts=split_text(prompt_question,["<image>","<speech>"])
input_ids=[]
for part in parts:
if "<image>"==part:
input_ids+=[IMAGE_TOKEN_INDEX]
elif "<speech>"==part:
input_ids+=[SPEECH_TOKEN_INDEX]
else:
input_ids+=tokenizer(part).input_ids
input_ids = torch.tensor(input_ids,dtype=torch.long).unsqueeze(0).to(device)
image_tensor = [image[0][0].half()]
image_sizes = [image[0][1]]
generate_kwargs={"eos_token_id":tokenizer.eos_token_id}
print(input_ids)
cont = model.generate(
input_ids,
images=image_tensor,
image_sizes=image_sizes,
speech=speech,
speech_lengths=speech_lengths,
do_sample=False,
temperature=0.5,
max_new_tokens=4096,
modalities=["video"],
**generate_kwargs
)
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)
return text_outputs[0]
def extract_audio_from_video(video_path, audio_path=None):
if audio_path:
try:
y, sr = librosa.load(audio_path, sr=8000, mono=True, res_type='kaiser_fast')
return (sr, y)
except Exception as e:
print(f"Error loading audio from {audio_path}: {e}")
return None
if video_path is None:
return None
try:
y, sr = librosa.load(video_path, sr=8000, mono=True, res_type='kaiser_fast')
return (sr, y)
except Exception as e:
print(f"Error extracting audio from video: {e}")
return None
head = """
<style>
/* Submit按钮默认和悬停效果 */
button.lg.secondary.svelte-5st68j {
background-color: #ff9933 !important;
transition: background-color 0.3s ease !important;
}
button.lg.secondary.svelte-5st68j:hover {
background-color: #ff7777 !important; /* 悬停时颜色加深 */
}
/* 确保按钮文字始终清晰可见 */
button.lg.secondary.svelte-5st68j span {
color: white !important;
}
/* 隐藏表头中的第二列 */
.table-wrap .svelte-p5q82i th:nth-child(2) {
display: none;
}
/* 隐藏表格内容中的第二列 */
.table-wrap .svelte-p5q82i td:nth-child(2) {
display: none;
}
.table-wrap {
max-height: 300px;
overflow-y: auto;
}
</style>
<script>
function initializeControls() {
const video = document.querySelector('[data-testid="Video-player"]');
const waveform = document.getElementById('waveform');
// 如果元素还没准备好,直接返回
if (!video || !waveform) {
return;
}
// 尝试获取音频元素
const audio = waveform.querySelector('div')?.shadowRoot?.querySelector('audio');
if (!audio) {
return;
}
console.log('Elements found:', { video, audio });
// 监听视频播放进度
video.addEventListener("play", () => {
if (audio.paused) {
audio.play(); // 如果音频暂停,开始播放
}
});
// 监听音频播放进度
audio.addEventListener("play", () => {
if (video.paused) {
video.play(); // 如果视频暂停,开始播放
}
});
// 同步视频和音频的播放进度
video.addEventListener("timeupdate", () => {
if (Math.abs(video.currentTime - audio.currentTime) > 0.1) {
audio.currentTime = video.currentTime; // 如果时间差超过0.1秒,同步
}
});
audio.addEventListener("timeupdate", () => {
if (Math.abs(audio.currentTime - video.currentTime) > 0.1) {
video.currentTime = audio.currentTime; // 如果时间差超过0.1秒,同步
}
});
// 监听暂停事件,确保视频和音频都暂停
video.addEventListener("pause", () => {
if (!audio.paused) {
audio.pause(); // 如果音频未暂停,暂停音频
}
});
audio.addEventListener("pause", () => {
if (!video.paused) {
video.pause(); // 如果视频未暂停,暂停视频
}
});
}
// 创建观察器监听DOM变化
const observer = new MutationObserver((mutations) => {
for (const mutation of mutations) {
if (mutation.addedNodes.length) {
// 当有新节点添加时,尝试初始化
const waveform = document.getElementById('waveform');
if (waveform?.querySelector('div')?.shadowRoot?.querySelector('audio')) {
console.log('Audio element detected');
initializeControls();
// 可选:如果不需要继续监听,可以断开观察器
// observer.disconnect();
}
}
}
});
// 开始观察
observer.observe(document.body, {
childList: true,
subtree: true
});
// 页面加载完成时也尝试初始化
document.addEventListener('DOMContentLoaded', () => {
console.log('DOM Content Loaded');
initializeControls();
});
</script>
"""
with gr.Blocks(head=head) as demo:
gr.Markdown(title_markdown)
with gr.Row():
with gr.Column():
video_input = gr.Video(label="Video", autoplay=True, loop=True, format="mp4", width=600, height=400, show_label=False, elem_id='video')
# Audio input synchronized with video playback
audio_display = gr.Audio(label="Video Audio Track", autoplay=False, show_label=True, visible=True, interactive=False, elem_id="audio")
text_input = gr.Textbox(label="Question", placeholder="Enter your message here...")
with gr.Column(): # Create a separate column for output and examples
output_text = gr.Textbox(label="Response", lines=14, max_lines=14)
gr.Examples(
examples=[
[f"{cur_dir}/videos/bike.mp4", f"{cur_dir}/videos/bike.mp3", "Can you tell me what I'm doing in short words. Describe them in a natural style."],
[f"{cur_dir}/videos/bike.mp4", f"{cur_dir}/videos/bike.mp3", "Can you tell me what I'm doing in short words. Describe them in a natural style."],
[f"{cur_dir}/videos/bike.mp4", f"{cur_dir}/videos/bike.mp3", "Can you tell me what I'm doing in short words. Describe them in a natural style."],
[f"{cur_dir}/videos/bike.mp4", f"{cur_dir}/videos/bike.mp3", "Can you tell me what I'm doing in short words. Describe them in a natural style."]
],
inputs=[video_input, audio_display, text_input],
outputs=[output_text]
)
# Add event handler for video changes
video_input.change(
fn=lambda video_path: extract_audio_from_video(video_path, audio_path=None),
inputs=[video_input],
outputs=[audio_display]
)
# Add event handler for video clear/delete
def clear_outputs(video):
if video is None: # Video is cleared/deleted
return ""
return gr.skip() # Keep existing text if video exists
video_input.change(
fn=clear_outputs,
inputs=[video_input],
outputs=[output_text]
)
# Add submit button and its event handler
submit_btn = gr.Button("Submit")
submit_btn.click(
fn=generate_text,
inputs=[video_input, audio_display, text_input],
outputs=[output_text]
)
# Launch the Gradio app
if __name__ == "__main__":
demo.launch(share=True)
|