File size: 17,214 Bytes
7673e3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a6e66f
7673e3b
 
 
 
 
 
 
 
 
 
 
 
 
775fe95
7673e3b
 
775fe95
 
7673e3b
 
4a6e66f
7673e3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a6e66f
7673e3b
 
 
 
 
 
 
 
 
 
 
4a6e66f
 
775fe95
 
4a6e66f
 
7673e3b
 
 
 
 
 
 
 
 
 
4a6e66f
7673e3b
 
 
 
4a6e66f
7673e3b
 
4a6e66f
7673e3b
4a6e66f
7673e3b
 
 
 
 
 
 
 
4a6e66f
7673e3b
4a6e66f
7673e3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a6e66f
 
7673e3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a6e66f
7673e3b
2ddef9b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
###  -----------------  ###
# Standard library imports
import os
import re
import sys
import copy
import warnings
from typing import Optional

# Third-party imports
import numpy as np
import torch
import torch.distributed as dist
import uvicorn
import librosa
import whisper
import requests
from fastapi import FastAPI
from pydantic import BaseModel
from decord import VideoReader, cpu
from transformers import AutoModelForCausalLM, AutoTokenizer

import gradio as gr
import spaces

# Local imports
from egogpt.model.builder import load_pretrained_model
from egogpt.mm_utils import get_model_name_from_path, process_images
from egogpt.constants import (
    IMAGE_TOKEN_INDEX, 
    DEFAULT_IMAGE_TOKEN, 
    IGNORE_INDEX,
    SPEECH_TOKEN_INDEX,
    DEFAULT_SPEECH_TOKEN
)
from egogpt.conversation import conv_templates, SeparatorStyle
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

# pretrained = "/mnt/sfs-common/jkyang/EgoGPT/checkpoints/EgoGPT-llavaov-7b-EgoIT-109k-release"
# pretrained = "/mnt/sfs-common/jkyang/EgoGPT/checkpoints/EgoGPT-llavaov-7b-EgoIT-EgoLife-Demo"
pretrained = '/EgoLife-v1/EgoGPT'
device = "cuda"
device_map = "cuda"

# Add this initialization code before loading the model
def setup(rank, world_size):
    os.environ['MASTER_ADDR'] = 'localhost'
    os.environ['MASTER_PORT'] = '12377'

    # initialize the process group
    dist.init_process_group("gloo", rank=rank, world_size=world_size)

setup(0,1)
tokenizer, model, max_length = load_pretrained_model(pretrained,device_map=device_map)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device).eval()

title_markdown = """
<div style="display: flex; justify-content: space-between; align-items: center; background: linear-gradient(90deg, rgba(72,219,251,0.1), rgba(29,209,161,0.1)); border-radius: 20px; box-shadow: 0 4px 6px rgba(0,0,0,0.1); padding: 20px; margin-bottom: 20px;">
    <div style="display: flex; align-items: center;">
        <a href="https://egolife-ntu.github.io/" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
            <img src="https://egolife-ntu.github.io/egolife.png" alt="EgoLife" style="max-width: 100px; height: auto; border-radius: 15px; box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
        </a>
        <div>
            <h1 style="margin: 0; background: linear-gradient(90deg, #48dbfb, #1dd1a1); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-size: 2.5em; font-weight: 700;">EgoLife</h1>
            <h2 style="margin: 10px 0; color: #2d3436; font-weight: 500;">Towards Egocentric Life Assistant</h2>
            <div style="display: flex; gap: 15px; margin-top: 10px;">
                <a href="https://egolife-ntu.github.io/" style="text-decoration: none; color: #48dbfb; font-weight: 500; transition: color 0.3s;">Project Page</a> |
                <a href="https://github.com/egolife-ntu/EgoGPT" style="text-decoration: none; color: #48dbfb; font-weight: 500; transition: color 0.3s;">Github</a> |
                <a href="https://huggingface.co/lmms-lab" style="text-decoration: none; color: #48dbfb; font-weight: 500; transition: color 0.3s;">Huggingface</a> |
                <a href="https://arxiv.org/" style="text-decoration: none; color: #48dbfb; font-weight: 500; transition: color 0.3s;">Paper</a> |
                <a href="https://x.com/" style="text-decoration: none; color: #48dbfb; font-weight: 500; transition: color 0.3s;">Twitter (X)</a>
            </div>
        </div>
    </div>
    <div style="text-align: right; margin-left: 20px;">
        <h1 style="margin: 0; background: linear-gradient(90deg, #48dbfb, #1dd1a1); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-size: 2.5em; font-weight: 700;">EgoGPT</h1>
        <h2 style="margin: 10px 0; background: linear-gradient(90deg, #48dbfb, #1dd1a1); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-size: 1.8em; font-weight: 600;">An Egocentric Video-Audio-Text Model<br>from EgoLife Project</h2>
    </div>
</div>
"""

bibtext = """
### Citation
```
@article{yang2025egolife,
  title={EgoLife\: Towards Egocentric Life Assistant},
  author={The EgoLife Team},
  journal={arXiv preprint arXiv:25xxx},
  year={2025}
  }
```
"""

# cur_dir = os.path.dirname(os.path.abspath(__file__))
cur_dir = ''


def time_to_frame_idx(time_int: int, fps: int) -> int:
    """
    Convert time in HHMMSSFF format (integer or string) to frame index.
    :param time_int: Time in HHMMSSFF format, e.g., 10483000 (10:48:30.00) or "10483000".
    :param fps: Frames per second of the video.
    :return: Frame index corresponding to the given time.
    """
    # Ensure time_int is a string for slicing
    time_str = str(time_int).zfill(
        8)  # Pad with zeros if necessary to ensure it's 8 digits

    hours = int(time_str[:2])
    minutes = int(time_str[2:4])
    seconds = int(time_str[4:6])
    frames = int(time_str[6:8])

    total_seconds = hours * 3600 + minutes * 60 + seconds
    total_frames = total_seconds * fps + frames  # Convert to total frames

    return total_frames

def split_text(text, keywords):
    # 创建一个正则表达式模式,将所有关键词用 | 连接,并使用捕获组
    pattern = '(' + '|'.join(map(re.escape, keywords)) + ')'
    # 使用 re.split 保留分隔符
    parts = re.split(pattern, text)
    # 去除空字符串
    parts = [part for part in parts if part]
    return parts

warnings.filterwarnings("ignore")

# Create FastAPI instance
app = FastAPI()
def load_video(
    video_path: Optional[str] = None,
    max_frames_num: int = 16,
    fps: int = 1,
    video_start_time: Optional[float] = None,
    start_time: Optional[float] = None,
    end_time: Optional[float] = None,
    time_based_processing: bool = False
) -> tuple:
    vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
    target_sr = 16000
    
    # Add new time-based processing logic
    if time_based_processing:
        # Initialize video reader
        vr = decord.VideoReader(video_path, ctx=decord.cpu(0), num_threads=1)
        total_frame_num = len(vr)

        # Get the actual FPS of the video
        video_fps = vr.get_avg_fps()

        # Convert time to frame index based on the actual video FPS
        video_start_frame = int(time_to_frame_idx(video_start_time, video_fps))
        start_frame = int(time_to_frame_idx(start_time, video_fps))
        end_frame = int(time_to_frame_idx(end_time, video_fps))

        print("start frame", start_frame)
        print("end frame", end_frame)

        # Ensure the end time does not exceed the total frame number
        if end_frame - start_frame > total_frame_num:
            end_frame = total_frame_num + start_frame

        # Adjust start_frame and end_frame based on video start time
        start_frame -= video_start_frame
        end_frame -= video_start_frame
        start_frame = max(0, int(round(start_frame)))  # 确保不会小于0
        end_frame = min(total_frame_num, int(round(end_frame))) # 确保不会超过总帧数
        start_frame = int(round(start_frame))
        end_frame = int(round(end_frame))

        # Sample frames based on the provided fps (e.g., 1 frame per second)
        frame_idx = [i for i in range(start_frame, end_frame) if (i - start_frame) % int(video_fps / fps) == 0]

        # Get the video frames for the sampled indices
        video = vr.get_batch(frame_idx).asnumpy()
        target_sr = 16000  # Set target sample rate to 16kHz
    
        # Load audio from video with resampling
        y, _ = librosa.load(video_path, sr=target_sr)
        
        # Convert time to audio samples (using 16kHz sample rate)
        start_sample = int(start_time * target_sr)
        end_sample = int(end_time * target_sr)
        
        # Extract audio segment
        speech = y[start_sample:end_sample]
    else:
        # Original processing logic
        speech, _ = librosa.load(video_path, sr=target_sr)
        total_frame_num = len(vr)
        avg_fps = round(vr.get_avg_fps() / fps)
        frame_idx = [i for i in range(0, total_frame_num, avg_fps)]
        
        if max_frames_num > 0:
            if len(frame_idx) > max_frames_num:
                uniform_sampled_frames = np.linspace(0, total_frame_num - 1, max_frames_num, dtype=int)
                frame_idx = uniform_sampled_frames.tolist()
        
        video = vr.get_batch(frame_idx).asnumpy()

    # Process audio
    speech = whisper.pad_or_trim(speech.astype(np.float32))
    speech = whisper.log_mel_spectrogram(speech, n_mels=128).permute(1, 0)
    speech_lengths = torch.LongTensor([speech.shape[0]])
    
    return video, speech, speech_lengths

class PromptRequest(BaseModel):
    prompt: str
    video_path: str = None
    max_frames_num: int = 16
    fps: int = 1
    video_start_time: float = None
    start_time: float = None
    end_time: float = None
    time_based_processing: bool = False

# @spaces.GPU(duration=120)
def generate_text(video_path, audio_track, prompt):
    max_frames_num = 30
    fps = 1
    # model.eval()

    # Video + speech branch
    conv_template = "qwen_1_5"  # Make sure you use correct chat template for different models
    question = f"<image>\n{prompt}"
    conv = copy.deepcopy(conv_templates[conv_template])
    conv.append_message(conv.roles[0], question)
    conv.append_message(conv.roles[1], None)
    prompt_question = conv.get_prompt()

    video, speech, speech_lengths = load_video(
        video_path=video_path,
        max_frames_num=max_frames_num,
        fps=fps,
    )
    speech=torch.stack([speech]).to("cuda").half()
    processor = model.get_vision_tower().image_processor
    processed_video = processor.preprocess(video, return_tensors="pt")["pixel_values"]
    image = [(processed_video, video[0].size, "video")]

    print(prompt_question)
    parts=split_text(prompt_question,["<image>","<speech>"])
    input_ids=[]
    for part in parts:
        if "<image>"==part:
            input_ids+=[IMAGE_TOKEN_INDEX]
        elif "<speech>"==part:
            input_ids+=[SPEECH_TOKEN_INDEX]
        else:
            input_ids+=tokenizer(part).input_ids
            
    input_ids = torch.tensor(input_ids,dtype=torch.long).unsqueeze(0).to(device)
    image_tensor = [image[0][0].half()]
    image_sizes = [image[0][1]]

    generate_kwargs={"eos_token_id":tokenizer.eos_token_id}
    print(input_ids)
    cont = model.generate(
        input_ids,
        images=image_tensor,
        image_sizes=image_sizes,
        speech=speech,
        speech_lengths=speech_lengths,
        do_sample=False,
        temperature=0.5,
        max_new_tokens=4096,
        modalities=["video"],
        **generate_kwargs
    )
    
    text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)
    
    return text_outputs[0]

def extract_audio_from_video(video_path, audio_path=None):
    if audio_path:
        try:
            y, sr = librosa.load(audio_path, sr=8000, mono=True, res_type='kaiser_fast')
            return (sr, y)
        except Exception as e:
            print(f"Error loading audio from {audio_path}: {e}")
            return None
    if video_path is None:
        return None
    try:
        y, sr = librosa.load(video_path, sr=8000, mono=True, res_type='kaiser_fast')
        return (sr, y)
    except Exception as e:
        print(f"Error extracting audio from video: {e}")
        return None

head = """
<style>
/* Submit按钮默认和悬停效果 */
button.lg.secondary.svelte-5st68j {
    background-color: #ff9933 !important;
    transition: background-color 0.3s ease !important;
}

button.lg.secondary.svelte-5st68j:hover {
    background-color: #ff7777 !important;  /* 悬停时颜色加深 */
}

/* 确保按钮文字始终清晰可见 */
button.lg.secondary.svelte-5st68j span {
    color: white !important;
}

/* 隐藏表头中的第二列 */
.table-wrap .svelte-p5q82i th:nth-child(2) {
    display: none;
}

/* 隐藏表格内容中的第二列 */
.table-wrap .svelte-p5q82i td:nth-child(2) {
    display: none;
}

.table-wrap {
    max-height: 300px;
    overflow-y: auto;
}

</style>

<script>
function initializeControls() {
    const video = document.querySelector('[data-testid="Video-player"]');
    const waveform = document.getElementById('waveform');
    
    // 如果元素还没准备好,直接返回
    if (!video || !waveform) {
        return;
    }
    
    // 尝试获取音频元素
    const audio = waveform.querySelector('div')?.shadowRoot?.querySelector('audio');
    if (!audio) {
        return;
    }

    console.log('Elements found:', { video, audio });
    
   // 监听视频播放进度
  video.addEventListener("play", () => {
    if (audio.paused) {
      audio.play();  // 如果音频暂停,开始播放
    }
  });

  // 监听音频播放进度
  audio.addEventListener("play", () => {
    if (video.paused) {
      video.play();  // 如果视频暂停,开始播放
    }
  });

  // 同步视频和音频的播放进度
  video.addEventListener("timeupdate", () => {
    if (Math.abs(video.currentTime - audio.currentTime) > 0.1) {
      audio.currentTime = video.currentTime; // 如果时间差超过0.1秒,同步
    }
  });

  audio.addEventListener("timeupdate", () => {
    if (Math.abs(audio.currentTime - video.currentTime) > 0.1) {
      video.currentTime = audio.currentTime; // 如果时间差超过0.1秒,同步
    }
  });

  // 监听暂停事件,确保视频和音频都暂停
  video.addEventListener("pause", () => {
    if (!audio.paused) {
      audio.pause();  // 如果音频未暂停,暂停音频
    }
  });

  audio.addEventListener("pause", () => {
    if (!video.paused) {
      video.pause();  // 如果视频未暂停,暂停视频
    }
  });
}

// 创建观察器监听DOM变化
const observer = new MutationObserver((mutations) => {
    for (const mutation of mutations) {
        if (mutation.addedNodes.length) {
            // 当有新节点添加时,尝试初始化
            const waveform = document.getElementById('waveform');
            if (waveform?.querySelector('div')?.shadowRoot?.querySelector('audio')) {
                console.log('Audio element detected');
                initializeControls();
                // 可选:如果不需要继续监听,可以断开观察器
                // observer.disconnect();
            }
        }
    }
});

// 开始观察
observer.observe(document.body, {
    childList: true,
    subtree: true
});

// 页面加载完成时也尝试初始化
document.addEventListener('DOMContentLoaded', () => {
    console.log('DOM Content Loaded');
    initializeControls();
});

</script>
"""

with gr.Blocks(head=head) as demo:
    gr.Markdown(title_markdown)
    
    with gr.Row():
        with gr.Column():
            video_input = gr.Video(label="Video", autoplay=True, loop=True, format="mp4", width=600, height=400, show_label=False, elem_id='video')
            # Audio input synchronized with video playback
            audio_display = gr.Audio(label="Video Audio Track", autoplay=False, show_label=True, visible=True, interactive=False, elem_id="audio")
            text_input = gr.Textbox(label="Question", placeholder="Enter your message here...")
        
        with gr.Column():  # Create a separate column for output and examples
            output_text = gr.Textbox(label="Response", lines=14, max_lines=14)
            gr.Examples(
                examples=[
                    [f"{cur_dir}/videos/bike.mp4", f"{cur_dir}/videos/bike.mp3", "Can you tell me what I'm doing in short words. Describe them in a natural style."],
                    [f"{cur_dir}/videos/bike.mp4", f"{cur_dir}/videos/bike.mp3", "Can you tell me what I'm doing in short words. Describe them in a natural style."],
                    [f"{cur_dir}/videos/bike.mp4", f"{cur_dir}/videos/bike.mp3", "Can you tell me what I'm doing in short words. Describe them in a natural style."],
                    [f"{cur_dir}/videos/bike.mp4", f"{cur_dir}/videos/bike.mp3", "Can you tell me what I'm doing in short words. Describe them in a natural style."]
                ],
                inputs=[video_input, audio_display, text_input],
                outputs=[output_text]
            )

    # Add event handler for video changes
    video_input.change(
        fn=lambda video_path: extract_audio_from_video(video_path, audio_path=None),
        inputs=[video_input],
        outputs=[audio_display]
    )

    # Add event handler for video clear/delete
    def clear_outputs(video):
        if video is None:  # Video is cleared/deleted
            return ""
        return gr.skip()  # Keep existing text if video exists
    
    video_input.change(
        fn=clear_outputs,
        inputs=[video_input],
        outputs=[output_text]
    )

    # Add submit button and its event handler
    submit_btn = gr.Button("Submit")
    submit_btn.click(
        fn=generate_text,
        inputs=[video_input, audio_display, text_input],
        outputs=[output_text]
    )

# Launch the Gradio app
if __name__ == "__main__":
    demo.launch(share=True)