Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,341 Bytes
c62903f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
# Adopted from https://github.com/haotian-liu/LLaVA. Below is the original copyright:
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import base64
import dataclasses
from enum import Enum, auto
from io import BytesIO
from typing import Any, List, Tuple, Union
from PIL import Image
class SeparatorStyle(Enum):
"""Different separator style."""
TWO = auto()
PLAIN = auto()
CHATML = auto()
LLAMA_2 = auto()
LLAMA_3 = auto()
QWEN2 = auto()
@dataclasses.dataclass
class Conversation:
"""A class that keeps all conversation history."""
system: str
roles: List[str]
messages: List[List[str]]
offset: int
sep_style: SeparatorStyle = SeparatorStyle.PLAIN
sep: str = "###"
sep2: str = None
version: str = "Unknown"
tokenizer_id: str = ""
tokenizer: Any = None
# Stop criteria (the default one is EOS token)
stop_str: Union[str, List[str]] = None
# Stops generation if meeting any token in this list
stop_token_ids: List[int] = None
skip_next: bool = False
def get_prompt(self):
messages = self.messages
if self.sep_style == SeparatorStyle.TWO:
seps = [self.sep, self.sep2]
ret = self.system + seps[0]
for i, (role, message) in enumerate(messages):
if message:
if type(message) is tuple:
message = message[0]
ret += role + ": " + message + seps[i % 2]
else:
ret += role + ":"
elif self.sep_style == SeparatorStyle.LLAMA_3:
wrap_sys = (
lambda msg: f"<|start_header_id|>system<|end_header_id|>\n\n{msg}<|eot_id|>"
if len(msg) > 0
else msg
)
ret = "<|begin_of_text|>" + wrap_sys(self.system)
for i, (role, message) in enumerate(messages):
if message:
if type(message) is tuple:
message = message[0]
ret += f"<|start_header_id|>{role}<|end_header_id|>\n\n"
ret += message.strip() + self.sep2
else:
ret += f"<|start_header_id|>{role}<|end_header_id|>\n\n"
return ret
elif self.sep_style == SeparatorStyle.LLAMA_2:
wrap_sys = (
lambda msg: f"<<SYS>>\n{msg}\n<</SYS>>\n\n" if len(msg) > 0 else msg
)
wrap_inst = lambda msg: f"[INST] {msg} [/INST]"
ret = ""
for i, (role, message) in enumerate(messages):
if i == 0:
assert message, "first message should not be none"
assert role == self.roles[0], "first message should come from user"
if message:
if type(message) is tuple:
message, _, _ = message
if i == 0:
message = wrap_sys(self.system) + message
if i % 2 == 0:
message = wrap_inst(message)
ret += self.sep + message
else:
ret += " " + message + " " + self.sep2
else:
ret += ""
ret = ret.lstrip(self.sep)
elif self.sep_style == SeparatorStyle.PLAIN:
seps = [self.sep, self.sep2]
ret = self.system
for i, (role, message) in enumerate(messages):
if message:
if type(message) is tuple:
message, _, _ = message
ret += message + seps[i % 2]
else:
ret += ""
elif self.sep_style == SeparatorStyle.CHATML:
ret = "" if self.system == "" else self.system + self.sep + "\n"
for role, message in messages:
if message:
if type(message) is tuple:
message, images = message
message = "<speech>" * len(images) + message
ret += role + "\n" + message + self.sep + "\n"
else:
ret += role + "\n"
return ret
elif self.sep_style == SeparatorStyle.QWEN2:
start = "<|im_start|>"
end = "<|im_end|>\n"
ret = start + "system\n" + self.system + end
for i, (role, message) in enumerate(messages):
if message:
if type(message) is tuple:
message, _, _ = message
if message.endswith("<|endoftext|>"):
message = message.replace("<|endoftext|>", "")
ret += start + role + "\n" + message + end + "<|endoftext|>"
else:
assert (
not "<|endoftext|>" in message
), f"Invalid message: {message}"
ret += start + role + "\n" + message + end
else:
ret += start + role + "\n"
else:
raise ValueError(f"Invalid style: {self.sep_style}")
return ret
def append_message(self, role, message):
self.messages.append([role, message])
def to_gradio_chatbot(self):
ret = []
for i, (role, msg) in enumerate(self.messages[self.offset :]):
if i % 2 == 0:
if type(msg) is tuple:
msg, speech = msg
ret.append([msg, None])
else:
ret.append([msg, None])
else:
ret[-1][-1] = msg
return ret
def copy(self):
return Conversation(
system=self.system,
roles=self.roles,
messages=[[x, y] for x, y in self.messages],
offset=self.offset,
sep_style=self.sep_style,
sep=self.sep,
sep2=self.sep2,
version=self.version,
)
def dict(self):
if len(self.get_images()) > 0:
return {
"system": self.system,
"roles": self.roles,
"messages": [
[x, y[0] if type(y) is tuple else y] for x, y in self.messages
],
"offset": self.offset,
"sep": self.sep,
"sep2": self.sep2,
}
return {
"system": self.system,
"roles": self.roles,
"messages": self.messages,
"offset": self.offset,
"sep": self.sep,
"sep2": self.sep2,
}
conv_vicuna_v1 = Conversation(
system="A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
roles=("USER", "ASSISTANT"),
version="v1",
messages=[],
offset=0,
sep_style=SeparatorStyle.TWO,
sep=" ",
sep2="</s>",
)
conv_llama_2 = Conversation(
system="You are a helpful language and speech assistant. "
"You are able to understand the speech content that the user provides, "
"and assist the user with a variety of tasks using natural language.",
roles=("USER", "ASSISTANT"),
version="llama_v2",
messages=[],
offset=0,
sep_style=SeparatorStyle.LLAMA_2,
sep="<s>",
sep2="</s>",
)
conv_llama_3 = Conversation(
system="You are a helpful language and speech assistant. "
"You are able to understand the speech content that the user provides, "
"and assist the user with a variety of tasks using natural language.",
roles=("user", "assistant"),
version="llama_v3",
messages=[],
offset=0,
sep_style=SeparatorStyle.LLAMA_3,
sep="",
sep2="<|eot_id|>",
)
conv_qwen_v1 = Conversation(
system="You are a helpful assistant.",
roles=("user", "assistant"),
version="v1",
messages=(),
offset=0,
sep_style=SeparatorStyle.QWEN2,
)
conv_plain = Conversation(
system="",
roles=("", ""),
messages=(),
offset=0,
sep_style=SeparatorStyle.PLAIN,
sep="</s>",
)
conv_qwen = Conversation(
system="""<|im_start|>system
You are a helpful assistant.""",
roles=("<|im_start|>user", "<|im_start|>assistant"),
version="qwen",
messages=[],
offset=0,
sep_style=SeparatorStyle.CHATML,
sep="<|im_end|>",
)
default_conversation = conv_llama_3
conv_templates = {
"v1": conv_vicuna_v1,
"plain": conv_plain,
"llama_2": conv_llama_2,
"llama_3": conv_llama_3,
"v1_qwen2": conv_qwen_v1,
"qwen_1_5": conv_qwen,
}
if __name__ == "__main__":
print(default_conversation.get_prompt())
|