File size: 8,255 Bytes
c62903f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import torch
import torch.nn as nn
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel

from egogpt.utils import rank0_print

try:
    from s2wrapper import forward as multiscale_forward
except:
    pass


class CLIPVisionTower(nn.Module):
    def __init__(self, vision_tower, args, delay_load=False):
        super().__init__()

        self.is_loaded = False

        self.vision_tower_name = vision_tower
        self.select_layer = args.mm_vision_select_layer
        self.select_feature = getattr(args, "mm_vision_select_feature", "patch")

        if not delay_load:
            rank0_print(f"Loading vision tower: {vision_tower}")
            self.load_model()
        elif getattr(args, "unfreeze_mm_vision_tower", False):
            # TODO: better detector is needed.
            rank0_print(
                f"The checkpoint seems to contain `vision_tower` weights: `unfreeze_mm_vision_tower`: True."
            )
            self.load_model()
        elif (
            hasattr(args, "mm_tunable_parts")
            and "mm_vision_tower" in args.mm_tunable_parts
        ):
            rank0_print(
                f"The checkpoint seems to contain `vision_tower` weights: `mm_tunable_parts` contains `mm_vision_tower`."
            )
            self.load_model()
        else:
            self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name)

    def load_model(self, device_map=None):
        if self.is_loaded:
            rank0_print(
                "{} is already loaded, `load_model` called again, skipping.".format(
                    self.vision_tower_name
                )
            )
            return

        self.image_processor = CLIPImageProcessor.from_pretrained(
            self.vision_tower_name
        )
        self.vision_tower = CLIPVisionModel.from_pretrained(
            self.vision_tower_name, device_map=device_map
        )
        self.vision_tower.requires_grad_(False)

        self.is_loaded = True

    def feature_select(self, image_forward_outs):
        select_feature_type = self.select_feature

        if self.select_feature in ["slicefour_patch", "slicefour_cls_patch"]:
            select_every_k_layer = len(image_forward_outs.hidden_states) // 4
            image_features = torch.cat(
                [
                    image_forward_outs.hidden_states[i]
                    for i in range(
                        select_every_k_layer + self.select_layer,
                        len(image_forward_outs.hidden_states),
                        select_every_k_layer,
                    )
                ],
                dim=-1,
            )
            select_feature_type = select_feature_type.replace("slicefour_", "")
        elif self.select_feature in [
            "slice_m25811_f6_patch",
            "slice_m25811_f6_cls_patch",
        ]:
            select_layers = [-2, -5, -8, -11, 6]
            image_features = torch.cat(
                [image_forward_outs.hidden_states[i] for i in select_layers], dim=-1
            )
            select_feature_type = select_feature_type.replace("slice_m25811_f6_", "")
        else:
            image_features = image_forward_outs.hidden_states[self.select_layer]

        if select_feature_type == "patch":
            image_features = image_features[:, 1:]
        elif select_feature_type == "cls_patch":
            image_features = image_features
        else:
            raise ValueError(f"Unexpected select feature: {select_feature_type}")
        return image_features

    def forward(self, images):
        if type(images) is list:
            image_features = []
            for image in images:
                image_forward_out = self.vision_tower(
                    image.to(device=self.device, dtype=self.dtype).unsqueeze(0),
                    output_hidden_states=True,
                )
                image_feature = self.feature_select(image_forward_out).to(image.dtype)
                image_features.append(image_feature)
        else:
            image_forward_outs = self.vision_tower(
                images.to(device=self.device, dtype=self.dtype),
                output_hidden_states=True,
            )
            image_features = self.feature_select(image_forward_outs).to(images.dtype)

        return image_features

    @property
    def dummy_feature(self):
        return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)

    @property
    def dtype(self):
        return self.vision_tower.dtype

    @property
    def device(self):
        return self.vision_tower.device

    @property
    def config(self):
        if self.is_loaded:
            return self.vision_tower.config
        else:
            return self.cfg_only

    @property
    def hidden_size(self):
        _hidden_size = self.config.hidden_size
        if "slicefour" in self.select_feature:
            _hidden_size *= 4
        if "slice_m25811_f6" in self.select_feature:
            _hidden_size *= 5
        return _hidden_size

    @property
    def num_patches_per_side(self):
        return self.config.image_size // self.config.patch_size

    @property
    def num_patches(self):
        _num_patches = (self.config.image_size // self.config.patch_size) ** 2
        if "cls_patch" in self.select_feature:
            _num_patches += 1
        return _num_patches

    @property
    def image_size(self):
        return self.config.image_size


class CLIPVisionTowerS2(CLIPVisionTower):
    def __init__(self, vision_tower, args, delay_load=False):
        self.s2_scales = getattr(args, "s2_scales", "336,672,1008")
        self.s2_scales = list(map(int, self.s2_scales.split(",")))
        self.s2_scales.sort()
        self.s2_split_size = self.s2_scales[0]
        self.s2_image_size = self.s2_scales[-1]

        super().__init__(vision_tower, args, delay_load)

        # change resize/crop size in preprocessing to the largest image size in s2_scale
        if not delay_load or getattr(args, "unfreeze_mm_vision_tower", False):
            self.image_processor.size["shortest_edge"] = self.s2_image_size
            self.image_processor.crop_size["height"] = self.image_processor.crop_size[
                "width"
            ] = self.s2_image_size

    def load_model(self, device_map=None):
        if self.is_loaded:
            rank0_print(
                "{} is already loaded, `load_model` called again, skipping.".format(
                    self.vision_tower_name
                )
            )
            return

        self.image_processor = CLIPImageProcessor.from_pretrained(
            self.vision_tower_name
        )
        self.vision_tower = CLIPVisionModel.from_pretrained(
            self.vision_tower_name, device_map=device_map
        )
        self.vision_tower.requires_grad_(False)

        self.image_processor.size["shortest_edge"] = self.s2_image_size
        self.image_processor.crop_size["height"] = self.image_processor.crop_size[
            "width"
        ] = self.s2_image_size

        self.is_loaded = True

    def forward_feature(self, images):
        image_forward_outs = self.vision_tower(
            images.to(device=self.device, dtype=self.dtype), output_hidden_states=True
        )
        image_features = self.feature_select(image_forward_outs).to(images.dtype)
        return image_features

    def forward(self, images):
        if type(images) is list:
            image_features = []
            for image in images:
                image_feature = multiscale_forward(
                    self.forward_feature,
                    image.unsqueeze(0),
                    img_sizes=self.s2_scales,
                    max_split_size=self.s2_split_size,
                    split_forward=True,
                )
                image_features.append(image_feature)
        else:
            image_features = multiscale_forward(
                self.forward_feature,
                images,
                img_sizes=self.s2_scales,
                max_split_size=self.s2_split_size,
                split_forward=True,
            )

        return image_features

    @property
    def hidden_size(self):
        return self.config.hidden_size * len(self.s2_scales)