Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,691 Bytes
c62903f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
import itertools
import subprocess
import warnings
from dataclasses import dataclass
from typing import TYPE_CHECKING, List
import numba
import numpy as np
import torch
import torch.nn.functional as F
from .audio import HOP_LENGTH, SAMPLE_RATE, TOKENS_PER_SECOND
from .tokenizer import Tokenizer
if TYPE_CHECKING:
from .model import Whisper
def median_filter(x: torch.Tensor, filter_width: int):
"""Apply a median filter of width `filter_width` along the last dimension of `x`"""
pad_width = filter_width // 2
if x.shape[-1] <= pad_width:
# F.pad requires the padding width to be smaller than the input dimension
return x
if (ndim := x.ndim) <= 2:
# `F.pad` does not support 1D or 2D inputs for reflect padding but supports 3D and 4D
x = x[None, None, :]
assert (
filter_width > 0 and filter_width % 2 == 1
), "`filter_width` should be an odd number"
result = None
x = F.pad(x, (filter_width // 2, filter_width // 2, 0, 0), mode="reflect")
if x.is_cuda:
try:
from .triton_ops import median_filter_cuda
result = median_filter_cuda(x, filter_width)
except (RuntimeError, subprocess.CalledProcessError):
warnings.warn(
"Failed to launch Triton kernels, likely due to missing CUDA toolkit; "
"falling back to a slower median kernel implementation..."
)
if result is None:
# sort() is faster than torch.median (https://github.com/pytorch/pytorch/issues/51450)
result = x.unfold(-1, filter_width, 1).sort()[0][..., filter_width // 2]
if ndim <= 2:
result = result[0, 0]
return result
@numba.jit(nopython=True)
def backtrace(trace: np.ndarray):
i = trace.shape[0] - 1
j = trace.shape[1] - 1
trace[0, :] = 2
trace[:, 0] = 1
result = []
while i > 0 or j > 0:
result.append((i - 1, j - 1))
if trace[i, j] == 0:
i -= 1
j -= 1
elif trace[i, j] == 1:
i -= 1
elif trace[i, j] == 2:
j -= 1
else:
raise ValueError("Unexpected trace[i, j]")
result = np.array(result)
return result[::-1, :].T
@numba.jit(nopython=True, parallel=True)
def dtw_cpu(x: np.ndarray):
N, M = x.shape
cost = np.ones((N + 1, M + 1), dtype=np.float32) * np.inf
trace = -np.ones((N + 1, M + 1), dtype=np.float32)
cost[0, 0] = 0
for j in range(1, M + 1):
for i in range(1, N + 1):
c0 = cost[i - 1, j - 1]
c1 = cost[i - 1, j]
c2 = cost[i, j - 1]
if c0 < c1 and c0 < c2:
c, t = c0, 0
elif c1 < c0 and c1 < c2:
c, t = c1, 1
else:
c, t = c2, 2
cost[i, j] = x[i - 1, j - 1] + c
trace[i, j] = t
return backtrace(trace)
def dtw_cuda(x, BLOCK_SIZE=1024):
from .triton_ops import dtw_kernel
M, N = x.shape
assert M < BLOCK_SIZE, f"M should be smaller than {BLOCK_SIZE=}"
x_skew = (
F.pad(x, (0, M + 1), value=np.inf).flatten()[: M * (N + M)].reshape(M, N + M)
)
x_skew = x_skew.T.contiguous()
cost = torch.ones(N + M + 2, M + 2) * np.inf
cost[0, 0] = 0
cost = cost.cuda()
trace = torch.zeros_like(cost, dtype=torch.int32)
dtw_kernel[(1,)](
cost,
trace,
x_skew,
x_skew.stride(0),
cost.stride(0),
trace.stride(0),
N,
M,
BLOCK_SIZE=BLOCK_SIZE,
)
trace = trace.T.flatten()[: (M + 1) * (M + N + 3)].reshape(M + 1, M + N + 3)[
:, : N + 1
]
return backtrace(trace.cpu().numpy())
def dtw(x: torch.Tensor) -> np.ndarray:
if x.is_cuda:
try:
return dtw_cuda(x)
except (RuntimeError, subprocess.CalledProcessError):
warnings.warn(
"Failed to launch Triton kernels, likely due to missing CUDA toolkit; "
"falling back to a slower DTW implementation..."
)
return dtw_cpu(x.double().cpu().numpy())
@dataclass
class WordTiming:
word: str
tokens: List[int]
start: float
end: float
probability: float
def find_alignment(
model: "Whisper",
tokenizer: Tokenizer,
text_tokens: List[int],
mel: torch.Tensor,
num_frames: int,
*,
medfilt_width: int = 7,
qk_scale: float = 1.0,
) -> List[WordTiming]:
if len(text_tokens) == 0:
return []
tokens = torch.tensor(
[
*tokenizer.sot_sequence,
tokenizer.no_timestamps,
*text_tokens,
tokenizer.eot,
]
).to(model.device)
# install hooks on the cross attention layers to retrieve the attention weights
QKs = [None] * model.dims.n_text_layer
hooks = [
block.cross_attn.register_forward_hook(
lambda _, ins, outs, index=i: QKs.__setitem__(index, outs[-1][0])
)
for i, block in enumerate(model.decoder.blocks)
]
from .model import disable_sdpa
with torch.no_grad(), disable_sdpa():
logits = model(mel.unsqueeze(0), tokens.unsqueeze(0))[0]
sampled_logits = logits[len(tokenizer.sot_sequence) :, : tokenizer.eot]
token_probs = sampled_logits.softmax(dim=-1)
text_token_probs = token_probs[np.arange(len(text_tokens)), text_tokens]
text_token_probs = text_token_probs.tolist()
for hook in hooks:
hook.remove()
# heads * tokens * frames
weights = torch.stack([QKs[_l][_h] for _l, _h in model.alignment_heads.indices().T])
weights = weights[:, :, : num_frames // 2]
weights = (weights * qk_scale).softmax(dim=-1)
std, mean = torch.std_mean(weights, dim=-2, keepdim=True, unbiased=False)
weights = (weights - mean) / std
weights = median_filter(weights, medfilt_width)
matrix = weights.mean(axis=0)
matrix = matrix[len(tokenizer.sot_sequence) : -1]
text_indices, time_indices = dtw(-matrix)
words, word_tokens = tokenizer.split_to_word_tokens(text_tokens + [tokenizer.eot])
if len(word_tokens) <= 1:
# return on eot only
# >>> np.pad([], (1, 0))
# array([0.])
# This results in crashes when we lookup jump_times with float, like
# IndexError: arrays used as indices must be of integer (or boolean) type
return []
word_boundaries = np.pad(np.cumsum([len(t) for t in word_tokens[:-1]]), (1, 0))
jumps = np.pad(np.diff(text_indices), (1, 0), constant_values=1).astype(bool)
jump_times = time_indices[jumps] / TOKENS_PER_SECOND
start_times = jump_times[word_boundaries[:-1]]
end_times = jump_times[word_boundaries[1:]]
word_probabilities = [
np.mean(text_token_probs[i:j])
for i, j in zip(word_boundaries[:-1], word_boundaries[1:])
]
return [
WordTiming(word, tokens, start, end, probability)
for word, tokens, start, end, probability in zip(
words, word_tokens, start_times, end_times, word_probabilities
)
]
def merge_punctuations(alignment: List[WordTiming], prepended: str, appended: str):
# merge prepended punctuations
i = len(alignment) - 2
j = len(alignment) - 1
while i >= 0:
previous = alignment[i]
following = alignment[j]
if previous.word.startswith(" ") and previous.word.strip() in prepended:
# prepend it to the following word
following.word = previous.word + following.word
following.tokens = previous.tokens + following.tokens
previous.word = ""
previous.tokens = []
else:
j = i
i -= 1
# merge appended punctuations
i = 0
j = 1
while j < len(alignment):
previous = alignment[i]
following = alignment[j]
if not previous.word.endswith(" ") and following.word in appended:
# append it to the previous word
previous.word = previous.word + following.word
previous.tokens = previous.tokens + following.tokens
following.word = ""
following.tokens = []
else:
i = j
j += 1
def add_word_timestamps(
*,
segments: List[dict],
model: "Whisper",
tokenizer: Tokenizer,
mel: torch.Tensor,
num_frames: int,
prepend_punctuations: str = "\"'“¿([{-",
append_punctuations: str = "\"'.。,,!!??::”)]}、",
last_speech_timestamp: float,
**kwargs,
):
if len(segments) == 0:
return
text_tokens_per_segment = [
[token for token in segment["tokens"] if token < tokenizer.eot]
for segment in segments
]
text_tokens = list(itertools.chain.from_iterable(text_tokens_per_segment))
alignment = find_alignment(model, tokenizer, text_tokens, mel, num_frames, **kwargs)
word_durations = np.array([t.end - t.start for t in alignment])
word_durations = word_durations[word_durations.nonzero()]
median_duration = np.median(word_durations) if len(word_durations) > 0 else 0.0
median_duration = min(0.7, float(median_duration))
max_duration = median_duration * 2
# hack: truncate long words at sentence boundaries.
# a better segmentation algorithm based on VAD should be able to replace this.
if len(word_durations) > 0:
sentence_end_marks = ".。!!??"
# ensure words at sentence boundaries are not longer than twice the median word duration.
for i in range(1, len(alignment)):
if alignment[i].end - alignment[i].start > max_duration:
if alignment[i].word in sentence_end_marks:
alignment[i].end = alignment[i].start + max_duration
elif alignment[i - 1].word in sentence_end_marks:
alignment[i].start = alignment[i].end - max_duration
merge_punctuations(alignment, prepend_punctuations, append_punctuations)
time_offset = segments[0]["seek"] * HOP_LENGTH / SAMPLE_RATE
word_index = 0
for segment, text_tokens in zip(segments, text_tokens_per_segment):
saved_tokens = 0
words = []
while word_index < len(alignment) and saved_tokens < len(text_tokens):
timing = alignment[word_index]
if timing.word:
words.append(
dict(
word=timing.word,
start=round(time_offset + timing.start, 2),
end=round(time_offset + timing.end, 2),
probability=timing.probability,
)
)
saved_tokens += len(timing.tokens)
word_index += 1
# hack: truncate long words at segment boundaries.
# a better segmentation algorithm based on VAD should be able to replace this.
if len(words) > 0:
# ensure the first and second word after a pause is not longer than
# twice the median word duration.
if words[0]["end"] - last_speech_timestamp > median_duration * 4 and (
words[0]["end"] - words[0]["start"] > max_duration
or (
len(words) > 1
and words[1]["end"] - words[0]["start"] > max_duration * 2
)
):
if (
len(words) > 1
and words[1]["end"] - words[1]["start"] > max_duration
):
boundary = max(words[1]["end"] / 2, words[1]["end"] - max_duration)
words[0]["end"] = words[1]["start"] = boundary
words[0]["start"] = max(0, words[0]["end"] - max_duration)
# prefer the segment-level start timestamp if the first word is too long.
if (
segment["start"] < words[0]["end"]
and segment["start"] - 0.5 > words[0]["start"]
):
words[0]["start"] = max(
0, min(words[0]["end"] - median_duration, segment["start"])
)
else:
segment["start"] = words[0]["start"]
# prefer the segment-level end timestamp if the last word is too long.
if (
segment["end"] > words[-1]["start"]
and segment["end"] + 0.5 < words[-1]["end"]
):
words[-1]["end"] = max(
words[-1]["start"] + median_duration, segment["end"]
)
else:
segment["end"] = words[-1]["end"]
last_speech_timestamp = segment["end"]
segment["words"] = words
|