File size: 29,302 Bytes
c62903f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
import argparse
import os
import traceback
import warnings
from typing import TYPE_CHECKING, List, Optional, Tuple, Union

import numpy as np
import torch
import tqdm

from .audio import (
    FRAMES_PER_SECOND,
    HOP_LENGTH,
    N_FRAMES,
    N_SAMPLES,
    SAMPLE_RATE,
    log_mel_spectrogram,
    pad_or_trim,
)
from .decoding import DecodingOptions, DecodingResult
from .timing import add_word_timestamps
from .tokenizer import LANGUAGES, TO_LANGUAGE_CODE, get_tokenizer
from .utils import (
    exact_div,
    format_timestamp,
    get_end,
    get_writer,
    make_safe,
    optional_float,
    optional_int,
    str2bool,
)

if TYPE_CHECKING:
    from .model import Whisper


def transcribe(
    model: "Whisper",
    audio: Union[str, np.ndarray, torch.Tensor],
    *,
    verbose: Optional[bool] = None,
    temperature: Union[float, Tuple[float, ...]] = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
    compression_ratio_threshold: Optional[float] = 2.4,
    logprob_threshold: Optional[float] = -1.0,
    no_speech_threshold: Optional[float] = 0.6,
    condition_on_previous_text: bool = True,
    initial_prompt: Optional[str] = None,
    word_timestamps: bool = False,
    prepend_punctuations: str = "\"'“¿([{-",
    append_punctuations: str = "\"'.。,,!!??::”)]}、",
    clip_timestamps: Union[str, List[float]] = "0",
    hallucination_silence_threshold: Optional[float] = None,
    **decode_options,
):
    """
    Transcribe an audio file using Whisper

    Parameters
    ----------
    model: Whisper
        The Whisper model instance

    audio: Union[str, np.ndarray, torch.Tensor]
        The path to the audio file to open, or the audio waveform

    verbose: bool
        Whether to display the text being decoded to the console. If True, displays all the details,
        If False, displays minimal details. If None, does not display anything

    temperature: Union[float, Tuple[float, ...]]
        Temperature for sampling. It can be a tuple of temperatures, which will be successively used
        upon failures according to either `compression_ratio_threshold` or `logprob_threshold`.

    compression_ratio_threshold: float
        If the gzip compression ratio is above this value, treat as failed

    logprob_threshold: float
        If the average log probability over sampled tokens is below this value, treat as failed

    no_speech_threshold: float
        If the no_speech probability is higher than this value AND the average log probability
        over sampled tokens is below `logprob_threshold`, consider the segment as silent

    condition_on_previous_text: bool
        if True, the previous output of the model is provided as a prompt for the next window;
        disabling may make the text inconsistent across windows, but the model becomes less prone to
        getting stuck in a failure loop, such as repetition looping or timestamps going out of sync.

    word_timestamps: bool
        Extract word-level timestamps using the cross-attention pattern and dynamic time warping,
        and include the timestamps for each word in each segment.

    prepend_punctuations: str
        If word_timestamps is True, merge these punctuation symbols with the next word

    append_punctuations: str
        If word_timestamps is True, merge these punctuation symbols with the previous word

    initial_prompt: Optional[str]
        Optional text to provide as a prompt for the first window. This can be used to provide, or
        "prompt-engineer" a context for transcription, e.g. custom vocabularies or proper nouns
        to make it more likely to predict those word correctly.

    decode_options: dict
        Keyword arguments to construct `DecodingOptions` instances

    clip_timestamps: Union[str, List[float]]
        Comma-separated list start,end,start,end,... timestamps (in seconds) of clips to process.
        The last end timestamp defaults to the end of the file.

    hallucination_silence_threshold: Optional[float]
        When word_timestamps is True, skip silent periods longer than this threshold (in seconds)
        when a possible hallucination is detected

    Returns
    -------
    A dictionary containing the resulting text ("text") and segment-level details ("segments"), and
    the spoken language ("language"), which is detected when `decode_options["language"]` is None.
    """
    dtype = torch.float16 if decode_options.get("fp16", True) else torch.float32
    if model.device == torch.device("cpu"):
        if torch.cuda.is_available():
            warnings.warn("Performing inference on CPU when CUDA is available")
        if dtype == torch.float16:
            warnings.warn("FP16 is not supported on CPU; using FP32 instead")
            dtype = torch.float32

    if dtype == torch.float32:
        decode_options["fp16"] = False

    # Pad 30-seconds of silence to the input audio, for slicing
    mel = log_mel_spectrogram(audio, model.dims.n_mels, padding=N_SAMPLES)
    content_frames = mel.shape[-1] - N_FRAMES
    content_duration = float(content_frames * HOP_LENGTH / SAMPLE_RATE)

    if decode_options.get("language", None) is None:
        if not model.is_multilingual:
            decode_options["language"] = "en"
        else:
            if verbose:
                print(
                    "Detecting language using up to the first 30 seconds. Use `--language` to specify the language"
                )
            mel_segment = pad_or_trim(mel, N_FRAMES).to(model.device).to(dtype)
            _, probs = model.detect_language(mel_segment)
            decode_options["language"] = max(probs, key=probs.get)
            if verbose is not None:
                print(
                    f"Detected language: {LANGUAGES[decode_options['language']].title()}"
                )

    language: str = decode_options["language"]
    task: str = decode_options.get("task", "transcribe")
    tokenizer = get_tokenizer(
        model.is_multilingual,
        num_languages=model.num_languages,
        language=language,
        task=task,
    )

    if isinstance(clip_timestamps, str):
        clip_timestamps = [
            float(ts) for ts in (clip_timestamps.split(",") if clip_timestamps else [])
        ]
    seek_points: List[int] = [round(ts * FRAMES_PER_SECOND) for ts in clip_timestamps]
    if len(seek_points) == 0:
        seek_points.append(0)
    if len(seek_points) % 2 == 1:
        seek_points.append(content_frames)
    seek_clips: List[Tuple[int, int]] = list(zip(seek_points[::2], seek_points[1::2]))

    punctuation = "\"'“¿([{-\"'.。,,!!??::”)]}、"

    if word_timestamps and task == "translate":
        warnings.warn("Word-level timestamps on translations may not be reliable.")

    def decode_with_fallback(segment: torch.Tensor) -> DecodingResult:
        temperatures = (
            [temperature] if isinstance(temperature, (int, float)) else temperature
        )
        decode_result = None

        for t in temperatures:
            kwargs = {**decode_options}
            if t > 0:
                # disable beam_size and patience when t > 0
                kwargs.pop("beam_size", None)
                kwargs.pop("patience", None)
            else:
                # disable best_of when t == 0
                kwargs.pop("best_of", None)

            options = DecodingOptions(**kwargs, temperature=t)
            decode_result = model.decode(segment, options)

            needs_fallback = False
            if (
                compression_ratio_threshold is not None
                and decode_result.compression_ratio > compression_ratio_threshold
            ):
                needs_fallback = True  # too repetitive
            if (
                logprob_threshold is not None
                and decode_result.avg_logprob < logprob_threshold
            ):
                needs_fallback = True  # average log probability is too low
            if (
                no_speech_threshold is not None
                and decode_result.no_speech_prob > no_speech_threshold
            ):
                needs_fallback = False  # silence
            if not needs_fallback:
                break

        return decode_result

    clip_idx = 0
    seek = seek_clips[clip_idx][0]
    input_stride = exact_div(
        N_FRAMES, model.dims.n_audio_ctx
    )  # mel frames per output token: 2
    time_precision = (
        input_stride * HOP_LENGTH / SAMPLE_RATE
    )  # time per output token: 0.02 (seconds)
    all_tokens = []
    all_segments = []
    prompt_reset_since = 0

    if initial_prompt is not None:
        initial_prompt_tokens = tokenizer.encode(" " + initial_prompt.strip())
        all_tokens.extend(initial_prompt_tokens)
    else:
        initial_prompt_tokens = []

    def new_segment(
        *, start: float, end: float, tokens: torch.Tensor, result: DecodingResult
    ):
        tokens = tokens.tolist()
        text_tokens = [token for token in tokens if token < tokenizer.eot]
        return {
            "seek": seek,
            "start": start,
            "end": end,
            "text": tokenizer.decode(text_tokens),
            "tokens": tokens,
            "temperature": result.temperature,
            "avg_logprob": result.avg_logprob,
            "compression_ratio": result.compression_ratio,
            "no_speech_prob": result.no_speech_prob,
        }

    # show the progress bar when verbose is False (if True, transcribed text will be printed)
    with tqdm.tqdm(
        total=content_frames, unit="frames", disable=verbose is not False
    ) as pbar:
        last_speech_timestamp = 0.0
        # NOTE: This loop is obscurely flattened to make the diff readable.
        # A later commit should turn this into a simpler nested loop.
        # for seek_clip_start, seek_clip_end in seek_clips:
        #     while seek < seek_clip_end
        while clip_idx < len(seek_clips):
            seek_clip_start, seek_clip_end = seek_clips[clip_idx]
            if seek < seek_clip_start:
                seek = seek_clip_start
            if seek >= seek_clip_end:
                clip_idx += 1
                if clip_idx < len(seek_clips):
                    seek = seek_clips[clip_idx][0]
                continue
            time_offset = float(seek * HOP_LENGTH / SAMPLE_RATE)
            window_end_time = float((seek + N_FRAMES) * HOP_LENGTH / SAMPLE_RATE)
            segment_size = min(N_FRAMES, content_frames - seek, seek_clip_end - seek)
            mel_segment = mel[:, seek : seek + segment_size]
            segment_duration = segment_size * HOP_LENGTH / SAMPLE_RATE
            mel_segment = pad_or_trim(mel_segment, N_FRAMES).to(model.device).to(dtype)

            decode_options["prompt"] = all_tokens[prompt_reset_since:]
            result: DecodingResult = decode_with_fallback(mel_segment)
            tokens = torch.tensor(result.tokens)

            if no_speech_threshold is not None:
                # no voice activity check
                should_skip = result.no_speech_prob > no_speech_threshold
                if (
                    logprob_threshold is not None
                    and result.avg_logprob > logprob_threshold
                ):
                    # don't skip if the logprob is high enough, despite the no_speech_prob
                    should_skip = False

                if should_skip:
                    seek += segment_size  # fast-forward to the next segment boundary
                    continue

            previous_seek = seek
            current_segments = []

            # anomalous words are very long/short/improbable
            def word_anomaly_score(word: dict) -> float:
                probability = word.get("probability", 0.0)
                duration = word["end"] - word["start"]
                score = 0.0
                if probability < 0.15:
                    score += 1.0
                if duration < 0.133:
                    score += (0.133 - duration) * 15
                if duration > 2.0:
                    score += duration - 2.0
                return score

            def is_segment_anomaly(segment: Optional[dict]) -> bool:
                if segment is None or not segment["words"]:
                    return False
                words = [w for w in segment["words"] if w["word"] not in punctuation]
                words = words[:8]
                score = sum(word_anomaly_score(w) for w in words)
                return score >= 3 or score + 0.01 >= len(words)

            def next_words_segment(segments: List[dict]) -> Optional[dict]:
                return next((s for s in segments if s["words"]), None)

            timestamp_tokens: torch.Tensor = tokens.ge(tokenizer.timestamp_begin)
            single_timestamp_ending = timestamp_tokens[-2:].tolist() == [False, True]

            consecutive = torch.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0]
            consecutive.add_(1)
            if len(consecutive) > 0:
                # if the output contains two consecutive timestamp tokens
                slices = consecutive.tolist()
                if single_timestamp_ending:
                    slices.append(len(tokens))

                last_slice = 0
                for current_slice in slices:
                    sliced_tokens = tokens[last_slice:current_slice]
                    start_timestamp_pos = (
                        sliced_tokens[0].item() - tokenizer.timestamp_begin
                    )
                    end_timestamp_pos = (
                        sliced_tokens[-1].item() - tokenizer.timestamp_begin
                    )
                    current_segments.append(
                        new_segment(
                            start=time_offset + start_timestamp_pos * time_precision,
                            end=time_offset + end_timestamp_pos * time_precision,
                            tokens=sliced_tokens,
                            result=result,
                        )
                    )
                    last_slice = current_slice

                if single_timestamp_ending:
                    # single timestamp at the end means no speech after the last timestamp.
                    seek += segment_size
                else:
                    # otherwise, ignore the unfinished segment and seek to the last timestamp
                    last_timestamp_pos = (
                        tokens[last_slice - 1].item() - tokenizer.timestamp_begin
                    )
                    seek += last_timestamp_pos * input_stride
            else:
                duration = segment_duration
                timestamps = tokens[timestamp_tokens.nonzero().flatten()]
                if (
                    len(timestamps) > 0
                    and timestamps[-1].item() != tokenizer.timestamp_begin
                ):
                    # no consecutive timestamps but it has a timestamp; use the last one.
                    last_timestamp_pos = (
                        timestamps[-1].item() - tokenizer.timestamp_begin
                    )
                    duration = last_timestamp_pos * time_precision

                current_segments.append(
                    new_segment(
                        start=time_offset,
                        end=time_offset + duration,
                        tokens=tokens,
                        result=result,
                    )
                )
                seek += segment_size

            if word_timestamps:
                add_word_timestamps(
                    segments=current_segments,
                    model=model,
                    tokenizer=tokenizer,
                    mel=mel_segment,
                    num_frames=segment_size,
                    prepend_punctuations=prepend_punctuations,
                    append_punctuations=append_punctuations,
                    last_speech_timestamp=last_speech_timestamp,
                )

                if not single_timestamp_ending:
                    last_word_end = get_end(current_segments)
                    if last_word_end is not None and last_word_end > time_offset:
                        seek = round(last_word_end * FRAMES_PER_SECOND)

                # skip silence before possible hallucinations
                if hallucination_silence_threshold is not None:
                    threshold = hallucination_silence_threshold
                    if not single_timestamp_ending:
                        last_word_end = get_end(current_segments)
                        if last_word_end is not None and last_word_end > time_offset:
                            remaining_duration = window_end_time - last_word_end
                            if remaining_duration > threshold:
                                seek = round(last_word_end * FRAMES_PER_SECOND)
                            else:
                                seek = previous_seek + segment_size

                    # if first segment might be a hallucination, skip leading silence
                    first_segment = next_words_segment(current_segments)
                    if first_segment is not None and is_segment_anomaly(first_segment):
                        gap = first_segment["start"] - time_offset
                        if gap > threshold:
                            seek = previous_seek + round(gap * FRAMES_PER_SECOND)
                            continue

                    # skip silence before any possible hallucination that is surrounded
                    # by silence or more hallucinations
                    hal_last_end = last_speech_timestamp
                    for si in range(len(current_segments)):
                        segment = current_segments[si]
                        if not segment["words"]:
                            continue
                        if is_segment_anomaly(segment):
                            next_segment = next_words_segment(
                                current_segments[si + 1 :]
                            )
                            if next_segment is not None:
                                hal_next_start = next_segment["words"][0]["start"]
                            else:
                                hal_next_start = time_offset + segment_duration
                            silence_before = (
                                segment["start"] - hal_last_end > threshold
                                or segment["start"] < threshold
                                or segment["start"] - time_offset < 2.0
                            )
                            silence_after = (
                                hal_next_start - segment["end"] > threshold
                                or is_segment_anomaly(next_segment)
                                or window_end_time - segment["end"] < 2.0
                            )
                            if silence_before and silence_after:
                                seek = round(
                                    max(time_offset + 1, segment["start"])
                                    * FRAMES_PER_SECOND
                                )
                                if content_duration - segment["end"] < threshold:
                                    seek = content_frames
                                current_segments[si:] = []
                                break
                        hal_last_end = segment["end"]

                last_word_end = get_end(current_segments)
                if last_word_end is not None:
                    last_speech_timestamp = last_word_end

            if verbose:
                for segment in current_segments:
                    start, end, text = segment["start"], segment["end"], segment["text"]
                    line = f"[{format_timestamp(start)} --> {format_timestamp(end)}] {text}"
                    print(make_safe(line))

            # if a segment is instantaneous or does not contain text, clear it
            for i, segment in enumerate(current_segments):
                if segment["start"] == segment["end"] or segment["text"].strip() == "":
                    segment["text"] = ""
                    segment["tokens"] = []
                    segment["words"] = []

            all_segments.extend(
                [
                    {"id": i, **segment}
                    for i, segment in enumerate(
                        current_segments, start=len(all_segments)
                    )
                ]
            )
            all_tokens.extend(
                [token for segment in current_segments for token in segment["tokens"]]
            )

            if not condition_on_previous_text or result.temperature > 0.5:
                # do not feed the prompt tokens if a high temperature was used
                prompt_reset_since = len(all_tokens)

            # update progress bar
            pbar.update(min(content_frames, seek) - previous_seek)

    return dict(
        text=tokenizer.decode(all_tokens[len(initial_prompt_tokens) :]),
        segments=all_segments,
        language=language,
    )


def cli():
    from . import available_models

    def valid_model_name(name):
        if name in available_models() or os.path.exists(name):
            return name
        raise ValueError(
            f"model should be one of {available_models()} or path to a model checkpoint"
        )

    # fmt: off
    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument("audio", nargs="+", type=str, help="audio file(s) to transcribe")
    parser.add_argument("--model", default="turbo", type=valid_model_name, help="name of the Whisper model to use")
    parser.add_argument("--model_dir", type=str, default=None, help="the path to save model files; uses ~/.cache/whisper by default")
    parser.add_argument("--device", default="cuda" if torch.cuda.is_available() else "cpu", help="device to use for PyTorch inference")
    parser.add_argument("--output_dir", "-o", type=str, default=".", help="directory to save the outputs")
    parser.add_argument("--output_format", "-f", type=str, default="all", choices=["txt", "vtt", "srt", "tsv", "json", "all"], help="format of the output file; if not specified, all available formats will be produced")
    parser.add_argument("--verbose", type=str2bool, default=True, help="whether to print out the progress and debug messages")

    parser.add_argument("--task", type=str, default="transcribe", choices=["transcribe", "translate"], help="whether to perform X->X speech recognition ('transcribe') or X->English translation ('translate')")
    parser.add_argument("--language", type=str, default=None, choices=sorted(LANGUAGES.keys()) + sorted([k.title() for k in TO_LANGUAGE_CODE.keys()]), help="language spoken in the audio, specify None to perform language detection")

    parser.add_argument("--temperature", type=float, default=0, help="temperature to use for sampling")
    parser.add_argument("--best_of", type=optional_int, default=5, help="number of candidates when sampling with non-zero temperature")
    parser.add_argument("--beam_size", type=optional_int, default=5, help="number of beams in beam search, only applicable when temperature is zero")
    parser.add_argument("--patience", type=float, default=None, help="optional patience value to use in beam decoding, as in https://arxiv.org/abs/2204.05424, the default (1.0) is equivalent to conventional beam search")
    parser.add_argument("--length_penalty", type=float, default=None, help="optional token length penalty coefficient (alpha) as in https://arxiv.org/abs/1609.08144, uses simple length normalization by default")

    parser.add_argument("--suppress_tokens", type=str, default="-1", help="comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations")
    parser.add_argument("--initial_prompt", type=str, default=None, help="optional text to provide as a prompt for the first window.")
    parser.add_argument("--condition_on_previous_text", type=str2bool, default=True, help="if True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop")
    parser.add_argument("--fp16", type=str2bool, default=True, help="whether to perform inference in fp16; True by default")

    parser.add_argument("--temperature_increment_on_fallback", type=optional_float, default=0.2, help="temperature to increase when falling back when the decoding fails to meet either of the thresholds below")
    parser.add_argument("--compression_ratio_threshold", type=optional_float, default=2.4, help="if the gzip compression ratio is higher than this value, treat the decoding as failed")
    parser.add_argument("--logprob_threshold", type=optional_float, default=-1.0, help="if the average log probability is lower than this value, treat the decoding as failed")
    parser.add_argument("--no_speech_threshold", type=optional_float, default=0.6, help="if the probability of the <|nospeech|> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence")
    parser.add_argument("--word_timestamps", type=str2bool, default=False, help="(experimental) extract word-level timestamps and refine the results based on them")
    parser.add_argument("--prepend_punctuations", type=str, default="\"\'“¿([{-", help="if word_timestamps is True, merge these punctuation symbols with the next word")
    parser.add_argument("--append_punctuations", type=str, default="\"\'.。,,!!??::”)]}、", help="if word_timestamps is True, merge these punctuation symbols with the previous word")
    parser.add_argument("--highlight_words", type=str2bool, default=False, help="(requires --word_timestamps True) underline each word as it is spoken in srt and vtt")
    parser.add_argument("--max_line_width", type=optional_int, default=None, help="(requires --word_timestamps True) the maximum number of characters in a line before breaking the line")
    parser.add_argument("--max_line_count", type=optional_int, default=None, help="(requires --word_timestamps True) the maximum number of lines in a segment")
    parser.add_argument("--max_words_per_line", type=optional_int, default=None, help="(requires --word_timestamps True, no effect with --max_line_width) the maximum number of words in a segment")
    parser.add_argument("--threads", type=optional_int, default=0, help="number of threads used by torch for CPU inference; supercedes MKL_NUM_THREADS/OMP_NUM_THREADS")
    parser.add_argument("--clip_timestamps", type=str, default="0", help="comma-separated list start,end,start,end,... timestamps (in seconds) of clips to process, where the last end timestamp defaults to the end of the file")
    parser.add_argument("--hallucination_silence_threshold", type=optional_float, help="(requires --word_timestamps True) skip silent periods longer than this threshold (in seconds) when a possible hallucination is detected")
    # fmt: on

    args = parser.parse_args().__dict__
    model_name: str = args.pop("model")
    model_dir: str = args.pop("model_dir")
    output_dir: str = args.pop("output_dir")
    output_format: str = args.pop("output_format")
    device: str = args.pop("device")
    os.makedirs(output_dir, exist_ok=True)

    if model_name.endswith(".en") and args["language"] not in {"en", "English"}:
        if args["language"] is not None:
            warnings.warn(
                f"{model_name} is an English-only model but receipted '{args['language']}'; using English instead."
            )
        args["language"] = "en"

    temperature = args.pop("temperature")
    if (increment := args.pop("temperature_increment_on_fallback")) is not None:
        temperature = tuple(np.arange(temperature, 1.0 + 1e-6, increment))
    else:
        temperature = [temperature]

    if (threads := args.pop("threads")) > 0:
        torch.set_num_threads(threads)

    from . import load_model

    model = load_model(model_name, device=device, download_root=model_dir)

    writer = get_writer(output_format, output_dir)
    word_options = [
        "highlight_words",
        "max_line_count",
        "max_line_width",
        "max_words_per_line",
    ]
    if not args["word_timestamps"]:
        for option in word_options:
            if args[option]:
                parser.error(f"--{option} requires --word_timestamps True")
    if args["max_line_count"] and not args["max_line_width"]:
        warnings.warn("--max_line_count has no effect without --max_line_width")
    if args["max_words_per_line"] and args["max_line_width"]:
        warnings.warn("--max_words_per_line has no effect with --max_line_width")
    writer_args = {arg: args.pop(arg) for arg in word_options}
    for audio_path in args.pop("audio"):
        try:
            result = transcribe(model, audio_path, temperature=temperature, **args)
            writer(result, audio_path, **writer_args)
        except Exception as e:
            traceback.print_exc()
            print(f"Skipping {audio_path} due to {type(e).__name__}: {str(e)}")


if __name__ == "__main__":
    cli()