EgoGPT-7B / egogpt /model /egogpt_arch.py
Choiszt's picture
Update egogpt
c62903f
# Adopted from https://github.com/haotian-liu/LLaVA. We modify the code to support speech input. Below is the original copyright:
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import re
from abc import ABC, abstractmethod
import torch
import torch.nn as nn
from egogpt.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, SPEECH_TOKEN_INDEX
from egogpt.mm_utils import get_anyres_image_grid_shape
from egogpt.utils import lengths_to_padding_mask, rank0_print, rank_print
from .multimodal_encoder.builder import build_vision_tower
from .multimodal_projector.builder import build_vision_projector
from .multimodal_resampler.builder import build_vision_resampler
from .speech_encoder.builder import build_speech_encoder
from .speech_projector.builder import build_speech_projector
class EgoGPTMetaModel:
def __init__(self, config):
super(EgoGPTMetaModel, self).__init__(config)
if hasattr(config, "mm_vision_tower"):
delay_load = getattr(config, "delay_load", False)
self.vision_tower = build_vision_tower(config, delay_load=delay_load)
self.vision_resampler = build_vision_resampler(
config, vision_tower=self.vision_tower
)
self.mm_projector = build_vision_projector(
config, vision_cfg=self.vision_tower.config
)
if "unpad" in getattr(config, "mm_patch_merge_type", ""):
self.image_newline = nn.Parameter(
torch.empty(config.hidden_size, dtype=self.dtype)
)
if hasattr(config, "speech_encoder"):
self.speech_encoder = build_speech_encoder(config)
self.speech_projector = build_speech_projector(config)
def get_vision_tower(self):
vision_tower = getattr(self, "vision_tower", None)
if type(vision_tower) is list:
vision_tower = vision_tower[0]
return vision_tower
def get_speech_encoder(self):
speech_encoder = getattr(self, "speech_encoder", None)
if type(speech_encoder) is list:
speech_encoder = speech_encoder[0]
return speech_encoder
def initialize_vision_modules(self, model_args, fsdp=None):
vision_tower = model_args.vision_tower
mm_vision_select_layer = model_args.mm_vision_select_layer
mm_vision_select_feature = model_args.mm_vision_select_feature
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
mm_patch_merge_type = model_args.mm_patch_merge_type
self.config.mm_vision_tower = vision_tower
self.config.vision_tower_pretrained = getattr(
model_args, "vision_tower_pretrained", ""
)
if self.get_vision_tower() is None:
vision_tower = build_vision_tower(model_args)
vision_resampler = build_vision_resampler(
model_args, vision_tower=vision_tower
)
for k, v in vision_resampler.config.items():
setattr(self.config, k, v)
if fsdp is not None and len(fsdp) > 0:
self.vision_tower = [vision_tower]
self.vision_resampler = [vision_resampler]
else:
self.vision_tower = vision_tower
self.vision_resampler = vision_resampler
else:
if fsdp is not None and len(fsdp) > 0:
vision_resampler = self.vision_resampler[0]
vision_tower = self.vision_tower[0]
else:
vision_resampler = self.vision_resampler
vision_tower = self.vision_tower
vision_tower.load_model()
# In case it is frozen by LoRA
for p in self.vision_resampler.parameters():
p.requires_grad = True
self.config.use_mm_proj = True
self.config.mm_projector_type = getattr(
model_args, "mm_projector_type", "linear"
)
self.config.mm_hidden_size = getattr(
vision_resampler, "hidden_size", vision_tower.hidden_size
)
self.config.mm_vision_select_layer = mm_vision_select_layer
self.config.mm_vision_select_feature = mm_vision_select_feature
self.config.mm_patch_merge_type = mm_patch_merge_type
if not hasattr(self.config, "add_faster_video"):
if model_args.add_faster_video:
embed_std = 1 / torch.sqrt(
torch.tensor(self.config.hidden_size, dtype=self.dtype)
)
self.faster_token = nn.Parameter(
torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std
)
if getattr(self, "mm_projector", None) is None:
self.mm_projector = build_vision_projector(
self.config, vision_cfg=vision_tower.config
)
if "unpad" in mm_patch_merge_type:
embed_std = 1 / torch.sqrt(
torch.tensor(self.config.hidden_size, dtype=self.dtype)
)
self.image_newline = nn.Parameter(
torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std
)
else:
# In case it is frozen by LoRA
for p in self.mm_projector.parameters():
p.requires_grad = True
if pretrain_mm_mlp_adapter is not None:
mm_projector_weights = torch.load(
pretrain_mm_mlp_adapter, map_location="cpu"
)
def get_w(weights, keyword):
return {
k.split(keyword + ".")[1]: v
for k, v in weights.items()
if keyword in k
}
incompatible_keys = self.mm_projector.load_state_dict(
get_w(mm_projector_weights, "mm_projector")
)
rank0_print(
f"Loaded mm projector weights from {pretrain_mm_mlp_adapter}. Incompatible keys: {incompatible_keys}"
)
incompatible_keys = self.vision_resampler.load_state_dict(
get_w(mm_projector_weights, "vision_resampler"), strict=False
)
rank0_print(
f"Loaded vision resampler weights from {pretrain_mm_mlp_adapter}. Incompatible keys: {incompatible_keys}"
)
def initialize_speech_modules(self, model_args, fsdp=None):
self.config.speech_encoder = getattr(model_args, "speech_encoder", None)
self.config.speech_encoder_type = getattr(
model_args, "speech_encoder_type", None
)
self.config.speech_projector_type = getattr(
model_args, "speech_projector_type", "linear"
)
self.config.speech_encoder_ds_rate = getattr(
model_args, "speech_encoder_ds_rate", 5
)
self.config.speech_encoder_hidden_size = getattr(
model_args, "speech_encoder_hidden_size", 1280
)
self.config.delay_load_audio = getattr(model_args, "delay_load_audio", True)
if self.get_speech_encoder() is None:
speech_encoder = build_speech_encoder(self.config)
if fsdp is not None and len(fsdp) > 0:
self.speech_encoder = [speech_encoder]
else:
self.speech_encoder = speech_encoder
else:
if fsdp is not None and len(fsdp) > 0:
speech_encoder = self.speech_encoder[0]
else:
speech_encoder = self.speech_encoder
speech_encoder.load_model(self.config)
if getattr(self, "speech_projector", None) is None:
self.speech_projector = build_speech_projector(self.config)
else:
# In case it is frozen by LoRA
for p in self.speech_projector.parameters():
p.requires_grad = True
if model_args.pretrain_speech_projector is not None:
pretrain_speech_projector_weights = torch.load(
model_args.pretrain_speech_projector, map_location="cpu"
)
def get_w(weights, keyword):
return {
k.split(keyword + ".")[1]: v
for k, v in weights.items()
if keyword in k
}
self.speech_projector.load_state_dict(
get_w(pretrain_speech_projector_weights, "speech_projector"),
strict=False,
)
def unpad_image(tensor, original_size):
"""
Unpads a PyTorch tensor of a padded and resized image.
Args:
tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format.
original_size (tuple): The original size of the image (height, width).
Returns:
torch.Tensor: The unpadded image tensor.
"""
original_width, original_height = original_size
current_height, current_width = tensor.shape[1:]
# Compute aspect ratios
original_aspect_ratio = original_width / original_height
current_aspect_ratio = current_width / current_height
# Determine padding size and direction
if original_aspect_ratio > current_aspect_ratio:
# Padding was added to the height
scale_factor = current_width / original_width
new_height = int(original_height * scale_factor)
padding = (current_height - new_height) // 2
unpadded_tensor = tensor[:, padding : current_height - padding, :]
else:
# Padding was added to the width
scale_factor = current_height / original_height
new_width = int(original_width * scale_factor)
padding = (current_width - new_width) // 2
unpadded_tensor = tensor[:, :, padding : current_width - padding]
return unpadded_tensor
class EgoGPTMetaForCausalLM(ABC):
@abstractmethod
def get_model(self):
pass
def get_speech_encoder(self):
return self.get_model().get_speech_encoder()
def get_speech_projector(self):
return self.get_model().speech_projector
def get_vision_tower(self):
return self.get_model().get_vision_tower()
def get_2dPool(self, image_feature, stride=2):
height = width = self.get_vision_tower().num_patches_per_side
num_frames, num_tokens, num_dim = image_feature.shape
image_feature = image_feature.view(num_frames, height, width, -1)
image_feature = image_feature.permute(0, 3, 1, 2).contiguous()
image_feature = nn.functional.avg_pool2d(image_feature, stride)
# image_feature = nn.functional.max_pool2d(image_feature, self.config.mm_spatial_pool_stride)
# if self.config.mm_spatial_pool_mode == "average":
# image_feature = nn.functional.avg_pool2d(image_feature, stride)
# elif self.config.mm_spatial_pool_mode == "max":
# image_feature = nn.functional.max_pool2d(image_feature, stride)
# elif self.config.mm_spatial_pool_mode == "bilinear":
# height, width = image_feature.shape[2:]
# scaled_shape = [math.ceil(height / stride), math.ceil(width / stride)]
# image_feature = nn.functional.interpolate(image_feature, size=scaled_shape, mode='bilinear')
# else:
# raise ValueError(f"Unexpected mm_spatial_pool_mode: {self.config.mm_spatial_pool_mode}")
image_feature = image_feature.permute(0, 2, 3, 1)
image_feature = image_feature.view(num_frames, -1, num_dim)
return image_feature
def encode_images(self, images):
image_features = self.get_model().get_vision_tower()(images)
# image_features = self.get_model().vision_resampler(image_features, images=images)
image_features = self.get_model().mm_projector(image_features)
return image_features
def encode_speech(self, speech, speech_lengths):
# audio cuttting
speech_encoder_type = self.config.speech_encoder_type
speech_encoder = self.get_speech_encoder()
if "whisper" in speech_encoder_type.lower():
encoder_outs = speech_encoder(speech.permute(0, 2, 1))
speech_lengths = (speech_lengths + 1) // 2
else:
raise ValueError(f"Unknown speech encoder: {speech_encoder}")
speech_projector_type = self.config.speech_projector_type
speech_projector = self.get_speech_projector()
if speech_projector_type == "linear":
encoder_outs = speech_projector(encoder_outs)
speech_lengths = speech_lengths // speech_projector.k
else:
raise ValueError(f"Unknown speech projector: {speech_projector_type}")
speech_features = [
encoder_outs[i, : speech_lengths[i]] for i in range(len(encoder_outs))
]
return speech_features
def add_token_per_grid(self, image_feature):
resize_h = int(math.sqrt(image_feature.shape[1]))
num_frames = image_feature.shape[0]
feature_dim = image_feature.shape[-1]
image_feature = image_feature.view(num_frames, 1, resize_h, resize_h, -1)
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
image_feature = torch.cat(
(
image_feature,
self.model.image_newline[:, None, None]
.expand(*image_feature.shape[:-1], 1)
.to(image_feature.device),
),
dim=-1,
)
if getattr(self.config, "add_faster_video", False):
# import pdb; pdb.set_trace()
# (3584, 832, 14) -> (3584, 64, 13, 14)
image_feature = image_feature.view(feature_dim, num_frames, resize_h, -1)
# (3584, 64, 13, 14) -> (64, 13, 14, 3584)
image_feature = image_feature.permute(1, 2, 3, 0).contiguous()
# (64, 13, 14, 3584) -> (64, 13*14, 3584)
image_feature = image_feature.flatten(1, 2)
# import pdb; pdb.set_trace()
return image_feature
# import pdb; pdb.set_trace()
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
return image_feature
def prepare_inputs_labels_for_speech_and_text(
self,
input_ids,
position_ids,
attention_mask,
past_key_values,
labels,
speech,
speech_lengths,
images,
image_sizes=None,
modalities=["image"],
):
vision_tower = self.get_vision_tower()
# rank_print(modalities)
if vision_tower is None or images is None or input_ids.shape[1] == 1:
return (
input_ids,
position_ids,
attention_mask,
past_key_values,
None,
labels,
)
speech_encoder = self.get_speech_encoder()
if speech_encoder is None or speech is None or input_ids.shape[1] == 1:
return (
input_ids,
position_ids,
attention_mask,
past_key_values,
None,
labels,
)
speech_features = self.encode_speech(speech, speech_lengths)
if isinstance(modalities, str):
modalities = [modalities]
# import pdb; pdb.set_trace()
if type(images) is list or images.ndim == 5:
if type(images) is list:
images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images]
video_idx_in_batch = []
for _ in range(len(modalities)):
if modalities[_] == "video":
video_idx_in_batch.append(_)
# print(f"Images: {images}, {type(images)}, {len(images)}")
# print(f"Video idx in batch: {modalities}")
images_list = []
for image in images:
if image.ndim == 4:
images_list.append(image)
else:
images_list.append(image.unsqueeze(0))
# concat_images = torch.cat([torch.tensor(image) for image in images_list], dim=0)
concat_images = torch.cat([image for image in images_list], dim=0)
split_sizes = [image.shape[0] for image in images_list]
concat_images.requires_grad_(True)
encoded_image_features = self.encode_images(concat_images)
# image_features,all_faster_video_features = self.encode_multimodals(concat_images, video_idx_in_batch, split_sizes)
# This is a list, each element is [num_images, patch * patch, dim]
# rank_print(f"Concat images : {concat_images.shape}")
encoded_image_features = torch.split(encoded_image_features, split_sizes)
image_features = []
for idx, image_feat in enumerate(encoded_image_features):
if idx in video_idx_in_batch:
image_features.append(self.get_2dPool(image_feat))
else:
image_features.append(image_feat)
# image_features = self.encode_multimodals(concat_images, video_idx_in_batch, split_sizes)
# rank_print(f"Encoded image feats : {[x.shape for x in image_features]}")
# image_features = torch.split(image_features, split_sizes, dim=0)
mm_patch_merge_type = getattr(self.config, "mm_patch_merge_type", "flat")
image_aspect_ratio = getattr(self.config, "image_aspect_ratio", "square")
mm_newline_position = getattr(
self.config, "mm_newline_position", "one_token"
)
if mm_patch_merge_type == "flat":
image_features = [x.flatten(0, 1) for x in image_features]
elif mm_patch_merge_type.startswith("spatial"):
new_image_features = []
for image_idx, image_feature in enumerate(image_features):
# FIXME: now assume the image is square, and split to 2x2 patches
# num_patches = h * w, where h = w = sqrt(num_patches)
# currently image_feature is a tensor of shape (4, num_patches, hidden_size)
# we want to first unflatten it to (2, 2, h, w, hidden_size)
# rank0_print("At least we are reaching here")
# import pdb; pdb.set_trace()
if image_idx in video_idx_in_batch: # video operations
# rank0_print("Video")
if mm_newline_position == "grid":
# Grid-wise
image_feature = self.add_token_per_grid(image_feature)
if getattr(self.config, "add_faster_video", False):
faster_video_feature = self.add_token_per_grid(
all_faster_video_features[image_idx]
)
# Add a token for each frame
concat_slow_fater_token = []
# import pdb; pdb.set_trace()
for _ in range(image_feature.shape[0]):
if _ % self.config.faster_token_stride == 0:
concat_slow_fater_token.append(
torch.cat(
(
image_feature[_],
self.model.faster_token[None].to(
image_feature.device
),
),
dim=0,
)
)
else:
concat_slow_fater_token.append(
torch.cat(
(
faster_video_feature[_],
self.model.faster_token[None].to(
image_feature.device
),
),
dim=0,
)
)
# import pdb; pdb.set_trace()
image_feature = torch.cat(concat_slow_fater_token)
new_image_features.append(image_feature)
elif mm_newline_position == "frame":
# Frame-wise
image_feature = self.add_token_per_frame(image_feature)
new_image_features.append(image_feature.flatten(0, 1))
elif mm_newline_position == "one_token":
# one-token
image_feature = image_feature.flatten(0, 1)
if "unpad" in mm_patch_merge_type:
image_feature = torch.cat(
(
image_feature,
self.model.image_newline[None].to(
image_feature.device
),
),
dim=0,
)
new_image_features.append(image_feature)
elif mm_newline_position == "no_token":
new_image_features.append(image_feature.flatten(0, 1))
else:
raise ValueError(
f"Unexpected mm_newline_position: {mm_newline_position}"
)
elif (
image_feature.shape[0] > 1
): # multi patches and multi images operations
# rank0_print("Single-images")
base_image_feature = image_feature[0]
image_feature = image_feature[1:]
height = width = self.get_vision_tower().num_patches_per_side
assert height * width == base_image_feature.shape[0]
if "anyres_max" in image_aspect_ratio:
matched_anyres_max_num_patches = re.match(
r"anyres_max_(\d+)", image_aspect_ratio
)
if matched_anyres_max_num_patches:
max_num_patches = int(
matched_anyres_max_num_patches.group(1)
)
if (
image_aspect_ratio == "anyres"
or "anyres_max" in image_aspect_ratio
):
if hasattr(self.get_vision_tower(), "image_size"):
vision_tower_image_size = (
self.get_vision_tower().image_size
)
else:
raise ValueError(
"vision_tower_image_size is not found in the vision tower."
)
try:
(
num_patch_width,
num_patch_height,
) = get_anyres_image_grid_shape(
image_sizes[image_idx],
self.config.image_grid_pinpoints,
vision_tower_image_size,
)
except Exception as e:
rank0_print(f"Error: {e}")
num_patch_width, num_patch_height = 2, 2
image_feature = image_feature.view(
num_patch_height, num_patch_width, height, width, -1
)
else:
image_feature = image_feature.view(2, 2, height, width, -1)
if "maxpool2x2" in mm_patch_merge_type:
image_feature = image_feature.permute(
4, 0, 2, 1, 3
).contiguous()
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
image_feature = nn.functional.max_pool2d(image_feature, 2)
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
elif (
"unpad" in mm_patch_merge_type
and "anyres_max" in image_aspect_ratio
and matched_anyres_max_num_patches
):
unit = image_feature.shape[2]
image_feature = image_feature.permute(
4, 0, 2, 1, 3
).contiguous()
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
image_feature = unpad_image(
image_feature, image_sizes[image_idx]
)
c, h, w = image_feature.shape
times = math.sqrt(h * w / (max_num_patches * unit**2))
if times > 1.1:
image_feature = image_feature[None]
image_feature = nn.functional.interpolate(
image_feature,
[int(h // times), int(w // times)],
mode="bilinear",
)[0]
image_feature = torch.cat(
(
image_feature,
self.model.image_newline[:, None, None]
.expand(*image_feature.shape[:-1], 1)
.to(image_feature.device),
),
dim=-1,
)
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
elif "unpad" in mm_patch_merge_type:
image_feature = image_feature.permute(
4, 0, 2, 1, 3
).contiguous()
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
image_feature = unpad_image(
image_feature, image_sizes[image_idx]
)
image_feature = torch.cat(
(
image_feature,
self.model.image_newline[:, None, None]
.expand(*image_feature.shape[:-1], 1)
.to(image_feature.device),
),
dim=-1,
)
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
else:
image_feature = image_feature.permute(
0, 2, 1, 3, 4
).contiguous()
image_feature = image_feature.flatten(0, 3)
if "nobase" in mm_patch_merge_type:
pass
else:
image_feature = torch.cat(
(base_image_feature, image_feature), dim=0
)
new_image_features.append(image_feature)
else: # single image operations
image_feature = image_feature[0]
if "unpad" in mm_patch_merge_type:
image_feature = torch.cat(
(image_feature, self.model.image_newline[None]), dim=0
)
new_image_features.append(image_feature)
image_features = new_image_features
else:
raise ValueError(
f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}"
)
else:
image_features = self.encode_images(images)
# TODO: image start / end is not implemented here to support pretraining.
if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(
self.config, "mm_use_im_start_end", False
):
raise NotImplementedError
# Let's just add dummy tensors if they do not exist,
# it is a headache to deal with None all the time.
# But it is not ideal, and if you have a better idea,
# please open an issue / submit a PR, thanks.
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(
0, input_ids.shape[1], dtype=torch.long, device=input_ids.device
)
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
# remove the padding using attention_mask -- FIXME
_input_ids = input_ids
input_ids = [
cur_input_ids[cur_attention_mask]
for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)
]
labels = [
cur_labels[cur_attention_mask]
for cur_labels, cur_attention_mask in zip(labels, attention_mask)
]
new_input_embeds = []
new_labels = []
cur_speech_idx = 0
cur_image_idx = 0
for batch_idx, cur_input_ids in enumerate(input_ids):
num_speech = (cur_input_ids == SPEECH_TOKEN_INDEX).sum()
num_image = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
# if num_speech:
# print("has <speech>")
# if num_image:
# print("has <image>")
num_speech_images = num_speech + num_image
if num_speech_images == 0:
cur_speech_features = speech_features[cur_speech_idx]
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
cur_input_embeds = torch.cat(
[cur_input_embeds_1, cur_speech_features[0:0]], dim=0
)
new_input_embeds.append(cur_input_embeds)
new_labels.append(labels[batch_idx])
cur_speech_idx += 1
cur_image_idx += 1
continue
multimodal_token_indices = (
[-1]
+ torch.where(
(cur_input_ids == SPEECH_TOKEN_INDEX)
| (cur_input_ids == IMAGE_TOKEN_INDEX)
)[0].tolist()
+ [cur_input_ids.shape[0]]
)
cur_input_ids_nospeech_image = []
cur_labels = labels[batch_idx]
cur_labels_nospeech_image = []
for i in range(len(multimodal_token_indices) - 1):
cur_input_ids_nospeech_image.append(
cur_input_ids[
multimodal_token_indices[i]
+ 1 : multimodal_token_indices[i + 1]
]
)
cur_labels_nospeech_image.append(
cur_labels[
multimodal_token_indices[i]
+ 1 : multimodal_token_indices[i + 1]
]
)
split_sizes = [x.shape[0] for x in cur_labels_nospeech_image]
cur_input_embeds = self.get_model().embed_tokens(
torch.cat(cur_input_ids_nospeech_image)
)
cur_input_embeds_no_speech_image = torch.split(
cur_input_embeds, split_sizes, dim=0
)
cur_new_input_embeds = []
cur_new_labels = []
for i in range(num_speech_images + 1):
cur_new_input_embeds.append(cur_input_embeds_no_speech_image[i])
cur_new_labels.append(cur_labels_nospeech_image[i])
if i < num_speech_images:
if i < num_image:
cur_images_features = image_features[cur_image_idx]
cur_image_idx += 1
cur_new_input_embeds.append(cur_images_features)
cur_new_labels.append(
torch.full(
(cur_images_features.shape[0],),
IGNORE_INDEX,
device=cur_labels.device,
dtype=cur_labels.dtype,
)
)
else:
cur_speech_features = speech_features[cur_speech_idx]
cur_speech_idx += 1
cur_new_input_embeds.append(cur_speech_features)
cur_new_labels.append(
torch.full(
(cur_speech_features.shape[0],),
IGNORE_INDEX,
device=cur_labels.device,
dtype=cur_labels.dtype,
)
)
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
cur_new_labels = torch.cat(cur_new_labels)
if num_image == 0:
cur_new_input_embeds = torch.cat(
[cur_new_input_embeds, image_features[cur_image_idx][0:0]], dim=0
)
cur_image_idx += 1
if num_speech == 0:
cur_new_input_embeds = torch.cat(
[cur_new_input_embeds, speech_features[cur_speech_idx][0:0]], dim=0
)
cur_speech_idx += 1
new_input_embeds.append(cur_new_input_embeds)
new_labels.append(cur_new_labels)
# Truncate sequences to max length as speech features can make the sequence longer
tokenizer_model_max_length = getattr(
self.config, "tokenizer_model_max_length", None
)
if tokenizer_model_max_length is not None:
new_input_embeds = [
x[:tokenizer_model_max_length] for x in new_input_embeds
]
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
# Combine them
max_len = max(x.shape[0] for x in new_input_embeds)
batch_size = len(new_input_embeds)
new_input_embeds_padded = []
new_labels_padded = torch.full(
(batch_size, max_len),
IGNORE_INDEX,
dtype=new_labels[0].dtype,
device=new_labels[0].device,
)
attention_mask = torch.zeros(
(batch_size, max_len),
dtype=attention_mask.dtype,
device=attention_mask.device,
)
position_ids = torch.zeros(
(batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device
)
for i, (cur_new_embed, cur_new_labels) in enumerate(
zip(new_input_embeds, new_labels)
):
cur_len = cur_new_embed.shape[0]
if getattr(self.config, "tokenizer_padding_side", "right") == "left":
new_input_embeds_padded.append(
torch.cat(
(
torch.zeros(
(max_len - cur_len, cur_new_embed.shape[1]),
dtype=cur_new_embed.dtype,
device=cur_new_embed.device,
),
cur_new_embed,
),
dim=0,
)
)
if cur_len > 0:
new_labels_padded[i, -cur_len:] = cur_new_labels
attention_mask[i, -cur_len:] = True
position_ids[i, -cur_len:] = torch.arange(
0, cur_len, dtype=position_ids.dtype, device=position_ids.device
)
else:
new_input_embeds_padded.append(
torch.cat(
(
cur_new_embed,
torch.zeros(
(max_len - cur_len, cur_new_embed.shape[1]),
dtype=cur_new_embed.dtype,
device=cur_new_embed.device,
),
),
dim=0,
)
)
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
attention_mask[i, :cur_len] = True
position_ids[i, :cur_len] = torch.arange(
0, cur_len, dtype=position_ids.dtype, device=position_ids.device
)
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None:
position_ids = None
return (
None,
position_ids,
attention_mask,
past_key_values,
new_input_embeds,
new_labels,
)
def prepare_inputs_labels_for_speech_and_text_debug(
self,
input_ids,
position_ids,
attention_mask,
past_key_values,
labels,
speech,
speech_lengths,
images,
image_sizes=None,
modalities=["image"],
):
# vision_tower = self.get_vision_tower()
# # rank_print(modalities)
# if vision_tower is None or images is None or input_ids.shape[1] == 1:
# return input_ids, position_ids, attention_mask, past_key_values, None, labels
# speech_encoder = self.get_speech_encoder()
# if speech_encoder is None or speech is None or input_ids.shape[1] == 1:
# return input_ids, position_ids, attention_mask, past_key_values, None, labels
speech_features = self.encode_speech(speech, speech_lengths)
if isinstance(modalities, str):
modalities = [modalities]
# import pdb; pdb.set_trace()
if type(images) is list or images.ndim == 5:
if type(images) is list:
images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images]
video_idx_in_batch = []
for _ in range(len(modalities)):
if modalities[_] == "video":
video_idx_in_batch.append(_)
# print(f"Images: {images}, {type(images)}, {len(images)}")
# print(f"Video idx in batch: {modalities}")
images_list = []
for image in images:
if image.ndim == 4:
images_list.append(image)
else:
images_list.append(image.unsqueeze(0))
# concat_images = torch.cat([torch.tensor(image) for image in images_list], dim=0)
concat_images = torch.cat([image for image in images_list], dim=0)
split_sizes = [image.shape[0] for image in images_list]
concat_images.requires_grad_(True)
encoded_image_features = self.encode_images(concat_images)
# image_features,all_faster_video_features = self.encode_multimodals(concat_images, video_idx_in_batch, split_sizes)
# This is a list, each element is [num_images, patch * patch, dim]
# rank_print(f"Concat images : {concat_images.shape}")
encoded_image_features = torch.split(encoded_image_features, split_sizes)
image_features = []
for idx, image_feat in enumerate(encoded_image_features):
if idx in video_idx_in_batch:
image_features.append(self.get_2dPool(image_feat))
else:
image_features.append(image_feat)
# image_features = self.encode_multimodals(concat_images, video_idx_in_batch, split_sizes)
# rank_print(f"Encoded image feats : {[x.shape for x in image_features]}")
# image_features = torch.split(image_features, split_sizes, dim=0)
mm_patch_merge_type = getattr(self.config, "mm_patch_merge_type", "flat")
image_aspect_ratio = getattr(self.config, "image_aspect_ratio", "square")
mm_newline_position = getattr(
self.config, "mm_newline_position", "one_token"
)
if mm_patch_merge_type == "flat":
image_features = [x.flatten(0, 1) for x in image_features]
elif mm_patch_merge_type.startswith("spatial"):
new_image_features = []
for image_idx, image_feature in enumerate(image_features):
# FIXME: now assume the image is square, and split to 2x2 patches
# num_patches = h * w, where h = w = sqrt(num_patches)
# currently image_feature is a tensor of shape (4, num_patches, hidden_size)
# we want to first unflatten it to (2, 2, h, w, hidden_size)
# rank0_print("At least we are reaching here")
# import pdb; pdb.set_trace()
if image_idx in video_idx_in_batch: # video operations
# rank0_print("Video")
if mm_newline_position == "grid":
# Grid-wise
image_feature = self.add_token_per_grid(image_feature)
new_image_features.append(image_feature)
elif mm_newline_position == "frame":
# Frame-wise
image_feature = self.add_token_per_frame(image_feature)
new_image_features.append(image_feature.flatten(0, 1))
elif mm_newline_position == "one_token":
# one-token
image_feature = image_feature.flatten(0, 1)
if "unpad" in mm_patch_merge_type:
image_feature = torch.cat(
(
image_feature,
self.model.image_newline[None].to(
image_feature.device
),
),
dim=0,
)
new_image_features.append(image_feature)
elif mm_newline_position == "no_token":
new_image_features.append(image_feature.flatten(0, 1))
else:
raise ValueError(
f"Unexpected mm_newline_position: {mm_newline_position}"
)
elif (
image_feature.shape[0] > 1
): # multi patches and multi images operations
# rank0_print("Single-images")
base_image_feature = image_feature[0]
image_feature = image_feature[1:]
height = width = self.get_vision_tower().num_patches_per_side
assert height * width == base_image_feature.shape[0]
if "anyres_max" in image_aspect_ratio:
matched_anyres_max_num_patches = re.match(
r"anyres_max_(\d+)", image_aspect_ratio
)
if matched_anyres_max_num_patches:
max_num_patches = int(
matched_anyres_max_num_patches.group(1)
)
if (
image_aspect_ratio == "anyres"
or "anyres_max" in image_aspect_ratio
):
if hasattr(self.get_vision_tower(), "image_size"):
vision_tower_image_size = (
self.get_vision_tower().image_size
)
else:
raise ValueError(
"vision_tower_image_size is not found in the vision tower."
)
try:
(
num_patch_width,
num_patch_height,
) = get_anyres_image_grid_shape(
image_sizes[image_idx],
self.config.image_grid_pinpoints,
vision_tower_image_size,
)
except Exception as e:
rank0_print(f"Error: {e}")
num_patch_width, num_patch_height = 2, 2
image_feature = image_feature.view(
num_patch_height, num_patch_width, height, width, -1
)
else:
image_feature = image_feature.view(2, 2, height, width, -1)
if "maxpool2x2" in mm_patch_merge_type:
image_feature = image_feature.permute(
4, 0, 2, 1, 3
).contiguous()
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
image_feature = nn.functional.max_pool2d(image_feature, 2)
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
elif (
"unpad" in mm_patch_merge_type
and "anyres_max" in image_aspect_ratio
and matched_anyres_max_num_patches
):
unit = image_feature.shape[2]
image_feature = image_feature.permute(
4, 0, 2, 1, 3
).contiguous()
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
image_feature = unpad_image(
image_feature, image_sizes[image_idx]
)
c, h, w = image_feature.shape
times = math.sqrt(h * w / (max_num_patches * unit**2))
if times > 1.1:
image_feature = image_feature[None]
image_feature = nn.functional.interpolate(
image_feature,
[int(h // times), int(w // times)],
mode="bilinear",
)[0]
image_feature = torch.cat(
(
image_feature,
self.model.image_newline[:, None, None]
.expand(*image_feature.shape[:-1], 1)
.to(image_feature.device),
),
dim=-1,
)
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
elif "unpad" in mm_patch_merge_type:
image_feature = image_feature.permute(
4, 0, 2, 1, 3
).contiguous()
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
image_feature = unpad_image(
image_feature, image_sizes[image_idx]
)
image_feature = torch.cat(
(
image_feature,
self.model.image_newline[:, None, None]
.expand(*image_feature.shape[:-1], 1)
.to(image_feature.device),
),
dim=-1,
)
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
else:
image_feature = image_feature.permute(
0, 2, 1, 3, 4
).contiguous()
image_feature = image_feature.flatten(0, 3)
if "nobase" in mm_patch_merge_type:
pass
else:
image_feature = torch.cat(
(base_image_feature, image_feature), dim=0
)
new_image_features.append(image_feature)
else: # single image operations
image_feature = image_feature[0]
if "unpad" in mm_patch_merge_type:
image_feature = torch.cat(
(image_feature, self.model.image_newline[None]), dim=0
)
new_image_features.append(image_feature)
image_features = new_image_features
else:
raise ValueError(
f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}"
)
else:
image_features = self.encode_images(images)
# TODO: image start / end is not implemented here to support pretraining.
if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(
self.config, "mm_use_im_start_end", False
):
raise NotImplementedError
# Let's just add dummy tensors if they do not exist,
# it is a headache to deal with None all the time.
# But it is not ideal, and if you have a better idea,
# please open an issue / submit a PR, thanks.
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(
0, input_ids.shape[1], dtype=torch.long, device=input_ids.device
)
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
# remove the padding using attention_mask -- FIXME
_input_ids = input_ids
input_ids = [
cur_input_ids[cur_attention_mask]
for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)
]
labels = [
cur_labels[cur_attention_mask]
for cur_labels, cur_attention_mask in zip(labels, attention_mask)
]
new_input_embeds = []
new_labels = []
cur_speech_idx = 0
cur_image_idx = 0
for batch_idx, cur_input_ids in enumerate(input_ids):
num_speech = (cur_input_ids == SPEECH_TOKEN_INDEX).sum()
num_image = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
if num_speech + num_image == 0:
cur_speech_features = speech_features[cur_speech_idx]
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
cur_input_embeds = torch.cat(
[cur_input_embeds_1, cur_speech_features[0:0]], dim=0
)
new_input_embeds.append(cur_input_embeds)
new_labels.append(labels[batch_idx])
cur_speech_idx += 1
cur_image_idx += 1
continue
multimodal_token_indices = sorted(
[-1]
+ torch.where(cur_input_ids == SPEECH_TOKEN_INDEX)[0].tolist()
+ torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist()
+ [cur_input_ids.shape[0]]
)
cur_input_ids_nospeech = []
cur_labels = labels[batch_idx]
cur_labels_nospeech = []
for i in range(len(multimodal_token_indices) - 1):
cur_input_ids_nospeech.append(
cur_input_ids[
multimodal_token_indices[i]
+ 1 : multimodal_token_indices[i + 1]
]
)
cur_labels_nospeech.append(
cur_labels[
multimodal_token_indices[i]
+ 1 : multimodal_token_indices[i + 1]
]
)
split_sizes = [x.shape[0] for x in cur_labels_nospeech]
cur_input_embeds = self.get_model().embed_tokens(
torch.cat(cur_input_ids_nospeech)
)
cur_input_embeds_no_speech = torch.split(
cur_input_embeds, split_sizes, dim=0
)
cur_new_input_embeds = []
cur_new_labels = []
for i in range(num_speech + num_image + 1):
cur_new_input_embeds.append(cur_input_embeds_no_speech[i])
cur_new_labels.append(cur_labels_nospeech[i])
if cur_speech_idx < num_speech:
try:
cur_speech_features = speech_features[cur_speech_idx]
except:
cur_speech_features = speech_features[cur_speech_idx - 1]
cur_speech_idx += 1
cur_new_input_embeds.append(cur_speech_features)
cur_new_labels.append(
torch.full(
(cur_speech_features.shape[0],),
IGNORE_INDEX,
device=cur_labels.device,
dtype=cur_labels.dtype,
)
)
if cur_image_idx < num_image:
try:
cur_image_features = image_features[cur_image_idx]
except:
cur_image_features = image_features[cur_image_idx - 1]
cur_image_idx += 1
cur_new_input_embeds.append(cur_image_features)
cur_new_labels.append(
torch.full(
(cur_image_features.shape[0],),
IGNORE_INDEX,
device=cur_labels.device,
dtype=cur_labels.dtype,
)
)
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
cur_new_labels = torch.cat(cur_new_labels)
new_input_embeds.append(cur_new_input_embeds)
new_labels.append(cur_new_labels)
# Truncate sequences to max length as speech features can make the sequence longer
tokenizer_model_max_length = getattr(
self.config, "tokenizer_model_max_length", None
)
if tokenizer_model_max_length is not None:
new_input_embeds = [
x[:tokenizer_model_max_length] for x in new_input_embeds
]
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
# Combine them
max_len = max(x.shape[0] for x in new_input_embeds)
batch_size = len(new_input_embeds)
new_input_embeds_padded = []
new_labels_padded = torch.full(
(batch_size, max_len),
IGNORE_INDEX,
dtype=new_labels[0].dtype,
device=new_labels[0].device,
)
attention_mask = torch.zeros(
(batch_size, max_len),
dtype=attention_mask.dtype,
device=attention_mask.device,
)
position_ids = torch.zeros(
(batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device
)
for i, (cur_new_embed, cur_new_labels) in enumerate(
zip(new_input_embeds, new_labels)
):
cur_len = cur_new_embed.shape[0]
if getattr(self.config, "tokenizer_padding_side", "right") == "left":
new_input_embeds_padded.append(
torch.cat(
(
torch.zeros(
(max_len - cur_len, cur_new_embed.shape[1]),
dtype=cur_new_embed.dtype,
device=cur_new_embed.device,
),
cur_new_embed,
),
dim=0,
)
)
if cur_len > 0:
new_labels_padded[i, -cur_len:] = cur_new_labels
attention_mask[i, -cur_len:] = True
position_ids[i, -cur_len:] = torch.arange(
0, cur_len, dtype=position_ids.dtype, device=position_ids.device
)
else:
new_input_embeds_padded.append(
torch.cat(
(
cur_new_embed,
torch.zeros(
(max_len - cur_len, cur_new_embed.shape[1]),
dtype=cur_new_embed.dtype,
device=cur_new_embed.device,
),
),
dim=0,
)
)
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
attention_mask[i, :cur_len] = True
position_ids[i, :cur_len] = torch.arange(
0, cur_len, dtype=position_ids.dtype, device=position_ids.device
)
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
print(f"new_input_embeds: {new_input_embeds[0].shape}")
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None:
position_ids = None
return (
None,
position_ids,
attention_mask,
past_key_values,
new_input_embeds,
new_labels,
)