Choiszt's picture
Update egogpt
c62903f
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import transformers
from transformers import (
AutoConfig,
AutoModelForCausalLM,
Qwen2Config,
Qwen2ForCausalLM,
Qwen2Model,
)
from transformers.generation.utils import GenerateOutput
from transformers.modeling_outputs import CausalLMOutputWithPast
from ..egogpt_arch import EgoGPTMetaForCausalLM, EgoGPTMetaModel
class EgoGPTConfigQwen(Qwen2Config):
model_type = "egogpt_qwen"
class EgoGPTQwenModel(EgoGPTMetaModel, Qwen2Model):
config_class = EgoGPTConfigQwen
def __init__(self, config: Qwen2Config):
super(EgoGPTQwenModel, self).__init__(config)
class EgoGPTQwenForCausalLM(Qwen2ForCausalLM, EgoGPTMetaForCausalLM):
config_class = EgoGPTConfigQwen
def __init__(self, config):
super(Qwen2ForCausalLM, self).__init__(config)
config.rope_scaling = None
self.model = EgoGPTQwenModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_model(self):
return self.model
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
speech: Optional[torch.FloatTensor] = None,
speech_lengths: Optional[torch.LongTensor] = None,
images: Optional[torch.FloatTensor] = None,
image_sizes: Optional[List[List[int]]] = None,
modalities: Optional[List[str]] = ["image"],
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
if inputs_embeds is None:
(
input_ids,
position_ids,
attention_mask,
past_key_values,
inputs_embeds,
labels,
) = self.prepare_inputs_labels_for_speech_and_text(
input_ids,
position_ids,
attention_mask,
past_key_values,
labels,
speech,
speech_lengths,
images,
image_sizes,
modalities,
)
return super().forward(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor] = None,
speech: Optional[torch.Tensor] = None,
speech_lengths: Optional[torch.Tensor] = None,
images: Optional[torch.FloatTensor] = None,
image_sizes: Optional[List[List[int]]] = None,
modalities: Optional[List[str]] = ["image"],
**kwargs,
) -> Union[GenerateOutput, torch.LongTensor]:
position_ids = kwargs.pop("position_ids", None)
attention_mask = kwargs.pop("attention_mask", None)
if "inputs_embeds" in kwargs:
raise NotImplementedError("`inputs_embeds` is not supported")
if speech is not None:
(
inputs,
position_ids,
attention_mask,
_,
inputs_embeds,
_,
) = self.prepare_inputs_labels_for_speech_and_text(
inputs,
position_ids,
attention_mask,
None,
None,
speech,
speech_lengths,
images,
image_sizes,
modalities,
)
else:
inputs_embeds = self.get_model().embed_tokens(inputs)
return super().generate(
position_ids=position_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
**kwargs,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
):
speech = kwargs.pop("speech", None)
speech_lengths = kwargs.pop("speech_lengths", None)
inputs = super().prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
**kwargs,
)
if speech is not None:
inputs["speech"] = speech
inputs["speech_lengths"] = speech_lengths
return inputs
AutoConfig.register("egogpt_qwen", EgoGPTConfigQwen)
AutoModelForCausalLM.register(EgoGPTConfigQwen, EgoGPTQwenForCausalLM)