Spaces:
Running
on
Zero
Running
on
Zero
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
import transformers | |
from transformers import ( | |
AutoConfig, | |
AutoModelForCausalLM, | |
Qwen2Config, | |
Qwen2ForCausalLM, | |
Qwen2Model, | |
) | |
from transformers.generation.utils import GenerateOutput | |
from transformers.modeling_outputs import CausalLMOutputWithPast | |
from ..egogpt_arch import EgoGPTMetaForCausalLM, EgoGPTMetaModel | |
class EgoGPTConfigQwen(Qwen2Config): | |
model_type = "egogpt_qwen" | |
class EgoGPTQwenModel(EgoGPTMetaModel, Qwen2Model): | |
config_class = EgoGPTConfigQwen | |
def __init__(self, config: Qwen2Config): | |
super(EgoGPTQwenModel, self).__init__(config) | |
class EgoGPTQwenForCausalLM(Qwen2ForCausalLM, EgoGPTMetaForCausalLM): | |
config_class = EgoGPTConfigQwen | |
def __init__(self, config): | |
super(Qwen2ForCausalLM, self).__init__(config) | |
config.rope_scaling = None | |
self.model = EgoGPTQwenModel(config) | |
self.vocab_size = config.vocab_size | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_model(self): | |
return self.model | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
speech: Optional[torch.FloatTensor] = None, | |
speech_lengths: Optional[torch.LongTensor] = None, | |
images: Optional[torch.FloatTensor] = None, | |
image_sizes: Optional[List[List[int]]] = None, | |
modalities: Optional[List[str]] = ["image"], | |
return_dict: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Union[Tuple, CausalLMOutputWithPast]: | |
if inputs_embeds is None: | |
( | |
input_ids, | |
position_ids, | |
attention_mask, | |
past_key_values, | |
inputs_embeds, | |
labels, | |
) = self.prepare_inputs_labels_for_speech_and_text( | |
input_ids, | |
position_ids, | |
attention_mask, | |
past_key_values, | |
labels, | |
speech, | |
speech_lengths, | |
images, | |
image_sizes, | |
modalities, | |
) | |
return super().forward( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
labels=labels, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
def generate( | |
self, | |
inputs: Optional[torch.Tensor] = None, | |
speech: Optional[torch.Tensor] = None, | |
speech_lengths: Optional[torch.Tensor] = None, | |
images: Optional[torch.FloatTensor] = None, | |
image_sizes: Optional[List[List[int]]] = None, | |
modalities: Optional[List[str]] = ["image"], | |
**kwargs, | |
) -> Union[GenerateOutput, torch.LongTensor]: | |
position_ids = kwargs.pop("position_ids", None) | |
attention_mask = kwargs.pop("attention_mask", None) | |
if "inputs_embeds" in kwargs: | |
raise NotImplementedError("`inputs_embeds` is not supported") | |
if speech is not None: | |
( | |
inputs, | |
position_ids, | |
attention_mask, | |
_, | |
inputs_embeds, | |
_, | |
) = self.prepare_inputs_labels_for_speech_and_text( | |
inputs, | |
position_ids, | |
attention_mask, | |
None, | |
None, | |
speech, | |
speech_lengths, | |
images, | |
image_sizes, | |
modalities, | |
) | |
else: | |
inputs_embeds = self.get_model().embed_tokens(inputs) | |
return super().generate( | |
position_ids=position_ids, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
**kwargs, | |
) | |
def prepare_inputs_for_generation( | |
self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs | |
): | |
speech = kwargs.pop("speech", None) | |
speech_lengths = kwargs.pop("speech_lengths", None) | |
inputs = super().prepare_inputs_for_generation( | |
input_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
**kwargs, | |
) | |
if speech is not None: | |
inputs["speech"] = speech | |
inputs["speech_lengths"] = speech_lengths | |
return inputs | |
AutoConfig.register("egogpt_qwen", EgoGPTConfigQwen) | |
AutoModelForCausalLM.register(EgoGPTConfigQwen, EgoGPTQwenForCausalLM) | |