Spaces:
Running
on
Zero
Running
on
Zero
# Adopted from https://github.com/ddlBoJack/SLAM-LLM/blob/main/src/slam_llm/models/projector.py | |
import torch | |
import torch.nn as nn | |
class EncoderProjectorConcat(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.k = config.speech_encoder_ds_rate | |
self.encoder_dim = config.speech_encoder_hidden_size | |
self.llm_dim = config.hidden_size | |
self.linear1 = nn.Linear(self.encoder_dim * self.k, 2048) | |
self.relu = nn.ReLU() | |
self.linear2 = nn.Linear(2048, config.hidden_size) | |
def forward(self, x): | |
batch_size, seq_len, dim = x.size() | |
num_frames_to_discard = seq_len % self.k | |
if num_frames_to_discard > 0: | |
x = x[:, :-num_frames_to_discard, :] | |
seq_len = x.size(1) | |
x = x.contiguous() | |
x = x.view(batch_size, seq_len // self.k, dim * self.k) | |
x = self.linear1(x) | |
x = self.relu(x) | |
x = self.linear2(x) | |
return x | |