# Adopted from https://github.com/haotian-liu/LLaVA. We modify the code to support speech input. Below is the original copyright: # Copyright 2023 Haotian Liu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil import warnings import torch import torch.distributed as dist from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) from egogpt.model import * from egogpt.model.speech_encoder.builder import build_speech_encoder def load_pretrained_model( model_path, model_base=None, is_lora=False, load_8bit=False, load_4bit=False, device="cuda", use_flash_attn=False, **kwargs, ): # if dist.is_available() and not dist.is_initialized(): # dist.init_process_group(backend='nccl',init_method='env://') if load_8bit: kwargs["load_in_8bit"] = True elif load_4bit: kwargs["load_in_4bit"] = True kwargs["quantization_config"] = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", ) else: kwargs["torch_dtype"] = torch.float16 if use_flash_attn: kwargs["attn_implementation"] = "flash_attention_2" model_cls = EgoGPTQwenForCausalLM # Load EgoGPT model if is_lora: assert model_base is not None, "model_base is required for LoRA models." from egogpt.model.language_model.egogpt_llama import EgoGPTConfig lora_cfg_pretrained = EgoGPTConfig.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) print("Loading EgoGPT from base model...") model = model_cls.from_pretrained( model_base, low_cpu_mem_usage=False, config=lora_cfg_pretrained, **kwargs ) print("Loading additional EgoGPT weights...") if os.path.exists(os.path.join(model_path, "non_lora_trainables.bin")): non_lora_trainables = torch.load( os.path.join(model_path, "non_lora_trainables.bin"), map_location="cpu" ) non_lora_trainables = { (k[11:] if k.startswith("base_model.") else k): v for k, v in non_lora_trainables.items() } if any(k.startswith("model.model.") for k in non_lora_trainables): non_lora_trainables = { (k[6:] if k.startswith("model.") else k): v for k, v in non_lora_trainables.items() } model.load_state_dict(non_lora_trainables, strict=False) from peft import PeftModel print("Loading LoRA weights...") model = PeftModel.from_pretrained(model, model_path) print("Merging LoRA weights...") model = model.merge_and_unload() print("Model is loaded...") elif model_base is not None: print("Loading EgoGPT from base model...") tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) cfg_pretrained = AutoConfig.from_pretrained(model_path) model = model_cls.from_pretrained( model_base, low_cpu_mem_usage=False, config=cfg_pretrained, **kwargs ) speech_projector_weights = torch.load( os.path.join(model_path, "speech_projector.bin"), map_location="cpu" ) speech_projector_weights = { k: v.to(torch.float16) for k, v in speech_projector_weights.items() } model.load_state_dict(speech_projector_weights, strict=False) model = model.to(device=device) else: tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) model = model_cls.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) model = model.to(device=device) context_len = 4096 # model.get_model().speech_encoder = build_speech_encoder(model.config) # model.get_model().speech_encoder.to(device=device, dtype=torch.float16) # if hasattr(model.config, "max_sequence_length"): # context_len = model.config.max_sequence_length # else: # context_len = 2048 return tokenizer, model, context_len