JingyeChen22 commited on
Commit
2bec267
·
1 Parent(s): 3326f03

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -0
app.py CHANGED
@@ -444,6 +444,7 @@ with gr.Blocks() as demo:
444
  <h3 style="font-weight: 450; font-size: 1rem; margin: 0rem">
445
  [<a href="https://arxiv.org/abs/2311.16465" style="color:blue;">arXiv</a>]
446
  [<a href="https://github.com/microsoft/unilm/tree/master/textdiffuser-2" style="color:blue;">Code</a>]
 
447
  </h3>
448
  <h2 style="text-align: left; font-weight: 450; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
449
  We propose <b>TextDiffuser-2</b>, aiming at unleashing the power of language models for text rendering. Specifically, we <b>tame a language model into a layout planner</b> to transform user prompt into a layout using the caption-OCR pairs. The language model demonstrates flexibility and automation by inferring keywords from user prompts or incorporating user-specified keywords to determine their positions. Secondly, we <b>leverage the language model in the diffusion model as the layout encoder</b> to represent the position and content of text at the line level. This approach enables diffusion models to generate text images with broader diversity.
 
444
  <h3 style="font-weight: 450; font-size: 1rem; margin: 0rem">
445
  [<a href="https://arxiv.org/abs/2311.16465" style="color:blue;">arXiv</a>]
446
  [<a href="https://github.com/microsoft/unilm/tree/master/textdiffuser-2" style="color:blue;">Code</a>]
447
+ [<a href="https://discord.gg/HVEcfcwdHv" style="color:blue;">Discord</a>]
448
  </h3>
449
  <h2 style="text-align: left; font-weight: 450; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
450
  We propose <b>TextDiffuser-2</b>, aiming at unleashing the power of language models for text rendering. Specifically, we <b>tame a language model into a layout planner</b> to transform user prompt into a layout using the caption-OCR pairs. The language model demonstrates flexibility and automation by inferring keywords from user prompts or incorporating user-specified keywords to determine their positions. Secondly, we <b>leverage the language model in the diffusion model as the layout encoder</b> to represent the position and content of text at the line level. This approach enables diffusion models to generate text images with broader diversity.