File size: 3,407 Bytes
6880cdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import pandas as pd
import streamlit as st
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt

#dowload file
!wget https://raw.githubusercontent.com/owid/monkeypox/main/owid-monkeypox-data.csv

#read files
data = pd.read_csv('owid-monkeypox-data.csv')
data = data[['location','date','new_cases','total_cases','new_deaths','total_deaths']]

#preprocessiong data
all_location = {}
for i in data['location'].unique():
  all_location[i] = data[data['location'] == i].reset_index(drop=True)

# SIR model differential equations.
def deriv(x, t, beta, gamma):
    s, i, r = x
    dsdt = -beta * s * i
    didt = beta * s * i - gamma * i
    drdt =  gamma * i
    return [dsdt, didt, drdt]

#plot model
def plotdata(t, s, i, e=None):
    # plot the data
    fig = plt.figure(figsize=(12,6))
    ax = [fig.add_subplot(221, axisbelow=True), 
          fig.add_subplot(223),
          fig.add_subplot(122)]

    ax[0].plot(t, s, lw=3, label='Fraction Susceptible')
    ax[0].plot(t, i, lw=3, label='Fraction Infective')
    ax[0].plot(t, r, lw=3, label='Recovered')
    ax[0].set_title('Susceptible and Recovered Populations')
    ax[0].set_xlabel('Time /days')
    ax[0].set_ylabel('Fraction')

    ax[1].plot(t, i, lw=3, label='Infective')
    ax[1].set_title('Infectious Population')
    if e is not None: ax[1].plot(t, e, lw=3, label='Exposed')
    ax[1].set_ylim(0, 1.0)
    ax[1].set_xlabel('Time /days')
    ax[1].set_ylabel('Fraction')

    ax[2].plot(s, i, lw=3, label='s, i trajectory')
    ax[2].plot([1/R0, 1/R0], [0, 1], '--', lw=3, label='di/dt = 0')
    ax[2].plot(s[0], i[0], '.', ms=20, label='Initial Condition')
    ax[2].plot(s[-1], i[-1], '.', ms=20, label='Final Condition')
    ax[2].set_title('State Trajectory')
    ax[2].set_aspect('equal')
    ax[2].set_ylim(0, 1.05)
    ax[2].set_xlim(0, 1.05)
    ax[2].set_xlabel('Susceptible')
    ax[2].set_ylabel('Infectious')

    for a in ax: 
        a.grid(True)
        a.legend()

    plt.tight_layout()

#final model
def SIR(country,t_infective):
  # parameter values
  R0 = (all_location[country]['new_cases'].sum()/len(all_location[country]['date'].unique()))/t_infective
  t_infective = t_infective

  # initial number of infected and recovered individuals
  i_initial = 1/20000
  r_initial = 0.00
  s_initial = 1 - i_initial - r_initial

  gamma = 1/t_infective
  beta = R0*gamma

  t = np.linspace(0, 100, 1000)
  x_initial = s_initial, i_initial, r_initial
  soln = odeint(deriv, x_initial, t, args=(beta, gamma))
  s, i, r = soln.T
  e = None

  plotdata(t, s, i)

  return R0,t_infective,gamma,beta

def main():
    st.title("SIR Model for Monkeypox")

    with st.form("questionaire"):
        country = st.selectbox("Country")# user's input
        recovery = st.slider("How long Monkeypox recover?", 21, 31, 21)# user's input

        # clicked==True only when the button is clicked
        clicked = st.form_submit_button("Show Graph")
        if clicked:

            #show total cases graph
            all_location[country]['total_cases'].plot()

            # Show SIR
            SIR_param = SIR(country,recovery)

            st.success("SIR model parameters for "+str(country)+" is")
            st.success("R0 = "+str(SIR_param[0]))
            st.success("Beta = "+str(SIR_param[3]))
            st.success("Gamma = "+str(SIR_param[2]))

# Run main()
if __name__ == "__main__":
    main()