Spaces:
Sleeping
Sleeping
File size: 3,487 Bytes
6880cdd cb36f21 6880cdd 1650e3d 6880cdd 6dde7e1 6880cdd 6dde7e1 6880cdd 00c0fa0 6880cdd c210da8 6dde7e1 6880cdd 6dde7e1 3217373 6880cdd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import pandas as pd
import streamlit as st
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
#dowload file
#read files
data = pd.read_csv('myfile.csv')
data = data[['location','date','new_cases','total_cases','new_deaths','total_deaths']]
#preprocessiong data
all_location = {}
for i in data['location'].unique():
all_location[i] = data[data['location'] == i].reset_index(drop=True)
# SIR model differential equations.
def deriv(x, t, beta, gamma):
s, i, r = x
dsdt = -beta * s * i
didt = beta * s * i - gamma * i
drdt = gamma * i
return [dsdt, didt, drdt]
#plot model
def plotdata(t, s, i,r,R0, e=None):
# plot the data
fig = plt.figure(figsize=(12,6))
ax = [fig.add_subplot(221, axisbelow=True),
fig.add_subplot(223),
fig.add_subplot(122)]
ax[0].plot(t, s, lw=3, label='Fraction Susceptible')
ax[0].plot(t, i, lw=3, label='Fraction Infective')
ax[0].plot(t, r, lw=3, label='Recovered')
ax[0].set_title('Susceptible and Recovered Populations')
ax[0].set_xlabel('Time /days')
ax[0].set_ylabel('Fraction')
ax[1].plot(t, i, lw=3, label='Infective')
ax[1].set_title('Infectious Population')
if e is not None: ax[1].plot(t, e, lw=3, label='Exposed')
ax[1].set_ylim(0, 1.0)
ax[1].set_xlabel('Time /days')
ax[1].set_ylabel('Fraction')
ax[2].plot(s, i, lw=3, label='s, i trajectory')
ax[2].plot([1/R0, 1/R0], [0, 1], '--', lw=3, label='di/dt = 0')
ax[2].plot(s[0], i[0], '.', ms=20, label='Initial Condition')
ax[2].plot(s[-1], i[-1], '.', ms=20, label='Final Condition')
ax[2].set_title('State Trajectory')
ax[2].set_aspect('equal')
ax[2].set_ylim(0, 1.05)
ax[2].set_xlim(0, 1.05)
ax[2].set_xlabel('Susceptible')
ax[2].set_ylabel('Infectious')
for a in ax:
a.grid(True)
a.legend()
plt.tight_layout()
st.pyplot(fig)
#final model
def SIR(country,t_infective):
# parameter values
R0 = (all_location[country]['new_cases'].sum()/len(all_location[country]['date'].unique()))/t_infective
t_infective = t_infective
# initial number of infected and recovered individuals
i_initial = 1/20000
r_initial = 0.00
s_initial = 1 - i_initial - r_initial
gamma = 1/t_infective
beta = R0*gamma
t = np.linspace(0, 100, 1000)
x_initial = s_initial, i_initial, r_initial
soln = odeint(deriv, x_initial, t, args=(beta, gamma))
s, i, r = soln.T
e = None
return R0,t_infective,beta,gamma
def main():
st.title("SIR Model for Monkeypox")
with st.form("questionaire"):
country = st.selectbox("Country",data['location'].unique())# user's input
recovery = st.slider("How long Monkeypox recover?", 21, 31, 21)# user's input
# clicked==True only when the button is clicked
clicked = st.form_submit_button("Show Graph")
if clicked:
#show total cases graph
all_location[country]['total_cases'].plot()
# Show SIR
SIR_param = SIR(country,recovery)
st.success(st.pyplot(all_location[country]['total_cases']))
st.success(st.pyplot(SIR(country,recovery)))
st.success("SIR model parameters for "+str(country)+" is")
st.success("R0 = "+str(SIR_param[0]))
st.success("Beta = "+str(SIR_param[2]))
st.success("Gamma = "+str(SIR_param[3]))
# Run main()
if __name__ == "__main__":
main() |