|
import pandas as pd |
|
import streamlit as st |
|
import numpy as np |
|
from scipy.integrate import odeint |
|
import matplotlib.pyplot as plt |
|
from sklearn.metrics import mean_absolute_percentage_error |
|
import warnings |
|
warnings.filterwarnings("ignore") |
|
|
|
|
|
data = pd.read_csv('owid-monkeypox-data.csv') |
|
data = data[['location','iso_code','date','new_cases','total_cases','new_deaths','total_deaths']] |
|
|
|
pop = pd.read_csv('API_SP.POP.TOTL_DS2_en_csv_v2_4578059.csv') |
|
|
|
all_location = {} |
|
for i in data['iso_code'].unique(): |
|
all_location[i] = data[data['iso_code'] == i].reset_index(drop=True) |
|
|
|
popu = pop[['Country Code','2021']].to_dict('index') |
|
pop_dict = {} |
|
for i in popu.values(): |
|
pop_dict[i['Country Code']] = i['2021'] |
|
|
|
pop_dict['GLP'] = 400000 |
|
pop_dict['MTQ'] = 376480 |
|
pop_dict['OWID_WRL'] = 7836630792 |
|
|
|
code = dict(data.groupby('location')['iso_code'].unique()) |
|
|
|
|
|
def deriv(x, t, beta, gamma): |
|
s, i, r = x |
|
dsdt = -beta * s * i |
|
didt = beta * s * i - gamma * i |
|
drdt = gamma * i |
|
return [dsdt, didt, drdt] |
|
|
|
|
|
def plotdata(t, s, i,r,R0, e=None): |
|
|
|
fig = plt.figure(figsize=(12,6)) |
|
ax = [fig.add_subplot(221, axisbelow=True), |
|
fig.add_subplot(223), |
|
fig.add_subplot(122)] |
|
|
|
ax[0].plot(t, s, lw=3, label='Fraction Susceptible') |
|
ax[0].plot(t, i, lw=3, label='Fraction Infective') |
|
ax[0].plot(t, r, lw=3, label='Recovered') |
|
ax[0].set_title('Susceptible and Recovered Populations') |
|
ax[0].set_xlabel('Time /days') |
|
ax[0].set_ylabel('Fraction') |
|
|
|
ax[1].plot(t, i, lw=3, label='Infective') |
|
ax[1].set_title('Infectious Population') |
|
if e is not None: ax[1].plot(t, e, lw=3, label='Exposed') |
|
ax[1].set_ylim(0, 1.0) |
|
ax[1].set_xlabel('Time /days') |
|
ax[1].set_ylabel('Fraction') |
|
|
|
ax[2].plot(s, i, lw=3, label='s, i trajectory') |
|
ax[2].plot([1/R0, 1/R0], [0, 1], '--', lw=3, label='di/dt = 0') |
|
ax[2].plot(s[0], i[0], '.', ms=20, label='Initial Condition') |
|
ax[2].plot(s[-1], i[-1], '.', ms=20, label='Final Condition') |
|
ax[2].set_title('State Trajectory') |
|
ax[2].set_aspect('equal') |
|
ax[2].set_ylim(0, 1.05) |
|
ax[2].set_xlim(0, 1.05) |
|
ax[2].set_xlabel('Susceptible') |
|
ax[2].set_ylabel('Infectious') |
|
|
|
for a in ax: |
|
a.grid(True) |
|
a.legend() |
|
|
|
plt.tight_layout() |
|
|
|
return fig |
|
|
|
def compare_plt(country,i,pop): |
|
fig = plt.figure(figsize=(12,6)) |
|
ax = [fig.add_subplot(121, axisbelow=True),fig.add_subplot(122)] |
|
ax[0].set_title('Monkeypox confirmed cases') |
|
ax[0].plot(all_location[country]['total_cases'],lw=3,label='Infective') |
|
ax[0].set_xlabel('Days') |
|
ax[0].set_ylabel('Number of cases') |
|
ax[0].legend() |
|
|
|
scaler = all_location[country]['total_cases'].apply(lambda x : x/pop) |
|
ax[1].set_title('Monkeypox confirmed cases compare with model') |
|
ax[1].plot(scaler,lw=3,label='Real Infective') |
|
ax[1].plot(i,lw=3,label='SIR model Infective') |
|
ax[1].set_ylim(0,0.00005) |
|
ax[1].set_xlim(0,200) |
|
ax[1].set_xlabel('Days') |
|
ax[1].set_ylabel('Fraction Number of cases') |
|
ax[1].legend() |
|
plt.tight_layout() |
|
|
|
return fig |
|
|
|
|
|
def SIR(country,R0,t_infective,pop): |
|
|
|
|
|
|
|
R0 = R0 |
|
t_infective = t_infective |
|
|
|
|
|
i_initial = all_location[country]['total_cases'].iloc[0]/pop |
|
r_initial = 0.00 |
|
s_initial = 1 - i_initial - r_initial |
|
|
|
gamma = 1/t_infective |
|
beta = R0*gamma |
|
|
|
t = np.linspace(0, 3000, 3000) |
|
x_initial = s_initial, i_initial, r_initial |
|
soln = odeint(deriv, x_initial, t, args=(beta, gamma)) |
|
s, i, r = soln.T |
|
e = None |
|
|
|
scaler = all_location[country]['total_cases'].apply(lambda x : x/pop) |
|
rangee = len(all_location[country]['total_cases']) |
|
rmpe = mean_absolute_percentage_error(scaler,i[0:rangee])*100 |
|
|
|
|
|
return R0,t_infective,beta,gamma,rmpe,plotdata(t, s, i,r,R0),compare_plt(country,i,pop) |
|
|
|
def main(): |
|
st.title("SIR Model for Monkeypox in Thailand") |
|
st.subheader("Latest updated : 10/02/2023") |
|
st.subheader("Reference : https://jckantor.github.io/CBE30338/03.09-COVID-19.html") |
|
st.caption("Display graph of SIR model of monkeypox and comparison between the model and actual data. Try to find the best R0 that fit for the actual data (lowest MAPE).") |
|
|
|
with st.form("questionaire"): |
|
recovery = st.slider("How long Monkeypox last until recovery(days)? ", 14, 31, 21) |
|
R0 = st.slider("Basic Reproduction Number (R0)", 0.57, 3.00, 0.57) |
|
country_code = code["Thailand"][0] |
|
pop = pop_dict[country_code] |
|
|
|
|
|
clicked = st.form_submit_button("Show Graph") |
|
if clicked: |
|
|
|
|
|
SIR_param = SIR(country_code,R0,recovery,pop) |
|
|
|
if SIR_param[0] <= 1: |
|
a = 'No epidemic.' |
|
else: |
|
a = 'Epidemic has began.' |
|
|
|
st.pyplot(SIR_param[-2]) |
|
st.pyplot(SIR_param[-1]) |
|
st.success("SIR model parameters of Thailand "+" is") |
|
st.success("R0 (Basic Reproduction Number) = "+str(SIR_param[0])+' '+a) |
|
st.success("Beta (Rate of transmission) = "+str(round(SIR_param[2],3))) |
|
st.success("Gamma (Rate of Recovery) = "+str(round(SIR_param[3],3))) |
|
st.success("MAPE = "+str(round(SIR_param[4],3))+"%") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |