Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,8 +6,6 @@ import matplotlib.pyplot as plt
|
|
6 |
import warnings
|
7 |
warnings.filterwarnings("ignore")
|
8 |
|
9 |
-
#dowload file
|
10 |
-
|
11 |
#read files
|
12 |
data = pd.read_csv('owid-monkeypox-data.csv')
|
13 |
data = data[['location','iso_code','date','new_cases','total_cases','new_deaths','total_deaths']]
|
@@ -77,49 +75,87 @@ def plotdata(t, s, i,r,R0, e=None):
|
|
77 |
plt.tight_layout()
|
78 |
|
79 |
return fig
|
80 |
-
|
81 |
-
|
82 |
#final model
|
83 |
-
def SIR(country,t_infective):
|
|
|
|
|
84 |
# parameter values
|
|
|
85 |
t_infective = t_infective
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
gamma = 1/t_infective
|
87 |
-
beta =
|
88 |
-
R0 = beta/gamma
|
89 |
|
90 |
# initial number of infected and recovered individuals
|
91 |
i_initial = all_location[country]['new_cases'].sum()/pop_dict[country]
|
92 |
r_initial = 0.00
|
93 |
s_initial = 1 - i_initial - r_initial
|
94 |
|
95 |
-
t = np.linspace(0,
|
96 |
x_initial = s_initial, i_initial, r_initial
|
97 |
soln = odeint(deriv, x_initial, t, args=(beta, gamma))
|
98 |
s, i, r = soln.T
|
99 |
e = None
|
|
|
|
|
|
|
|
|
100 |
|
101 |
|
102 |
-
return R0,t_infective,beta,gamma,plotdata(t, s, i,r,R0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
def main():
|
105 |
st.title("SIR Model for Monkeypox")
|
106 |
|
107 |
with st.form("questionaire"):
|
108 |
country = st.selectbox("Country",data['location'].unique())# user's input
|
109 |
-
recovery = st.slider("How long Monkeypox recover?", 21, 31, 21)
|
|
|
110 |
country_code = code[country][0]
|
|
|
|
|
111 |
# clicked==True only when the button is clicked
|
112 |
clicked = st.form_submit_button("Show Graph")
|
113 |
if clicked:
|
114 |
|
115 |
# Show SIR
|
116 |
-
SIR_param = SIR(country_code,recovery)
|
117 |
|
118 |
st.pyplot(SIR_param[-1])
|
|
|
119 |
st.success("SIR model parameters for "+str(country)+" is")
|
120 |
st.success("R0 = "+str(SIR_param[0]))
|
121 |
st.success("Beta = "+str(SIR_param[2]))
|
122 |
st.success("Gamma = "+str(SIR_param[3]))
|
|
|
123 |
|
124 |
# Run main()
|
125 |
if __name__ == "__main__":
|
|
|
6 |
import warnings
|
7 |
warnings.filterwarnings("ignore")
|
8 |
|
|
|
|
|
9 |
#read files
|
10 |
data = pd.read_csv('owid-monkeypox-data.csv')
|
11 |
data = data[['location','iso_code','date','new_cases','total_cases','new_deaths','total_deaths']]
|
|
|
75 |
plt.tight_layout()
|
76 |
|
77 |
return fig
|
78 |
+
|
|
|
79 |
#final model
|
80 |
+
def SIR(country,R0,t_infective):
|
81 |
+
#R0 = 0.57 - 1.25
|
82 |
+
|
83 |
# parameter values
|
84 |
+
R0 = R0
|
85 |
t_infective = t_infective
|
86 |
+
|
87 |
+
# initial number of infected and recovered individuals
|
88 |
+
i_initial = all_location[country]['total_cases'].iloc[0]/pop_dict[country]
|
89 |
+
r_initial = 0.00
|
90 |
+
s_initial = 1 - i_initial - r_initial
|
91 |
+
|
92 |
gamma = 1/t_infective
|
93 |
+
beta = R0*gamma
|
|
|
94 |
|
95 |
# initial number of infected and recovered individuals
|
96 |
i_initial = all_location[country]['new_cases'].sum()/pop_dict[country]
|
97 |
r_initial = 0.00
|
98 |
s_initial = 1 - i_initial - r_initial
|
99 |
|
100 |
+
t = np.linspace(0, 3000, 3000)
|
101 |
x_initial = s_initial, i_initial, r_initial
|
102 |
soln = odeint(deriv, x_initial, t, args=(beta, gamma))
|
103 |
s, i, r = soln.T
|
104 |
e = None
|
105 |
+
|
106 |
+
scaler = all_location[country]['total_cases'].apply(lambda x : x/pop_dict[country])
|
107 |
+
rangee = len(all_location[country]['total_cases'])
|
108 |
+
rmpe = mean_absolute_percentage_error(scaler,i[0:rangee])
|
109 |
|
110 |
|
111 |
+
return R0,t_infective,beta,gamma,rmpe,plotdata(t, s, i,r,R0)
|
112 |
+
|
113 |
+
def compare_plt(country):
|
114 |
+
fig = plt.figure(figsize=(12,6))
|
115 |
+
ax = [fig.add_subplot(121, axisbelow=True),fig.add_subplot(122)]
|
116 |
+
ax[0].set_title('Monkeypox confirmed cases')
|
117 |
+
ax[0].plot(all_location[country]['total_cases'],lw=3,label='Infective')
|
118 |
+
ax[0].set_xlabel('Days')
|
119 |
+
ax[0].set_ylabel('Number of cases')
|
120 |
+
ax[0].legend()
|
121 |
+
|
122 |
+
scaler = all_location[country]['total_cases'].apply(lambda x : x/pop_dict[country])
|
123 |
+
ax[1].set_title('Monkeypox confirmed cases compare with model')
|
124 |
+
ax[1].plot(scaler,lw=3,label='Real Infective')
|
125 |
+
ax[1].plot(i,lw=3,label='SIR model Infective')
|
126 |
+
ax[1].set_ylim(0,0.00005)
|
127 |
+
ax[1].set_xlim(0,200)
|
128 |
+
ax[1].set_xlabel('Days')
|
129 |
+
ax[1].set_ylabel('Fraction Number of cases')
|
130 |
+
ax[1].legend()
|
131 |
+
plt.tight_layout()
|
132 |
+
|
133 |
+
return fig
|
134 |
|
135 |
def main():
|
136 |
st.title("SIR Model for Monkeypox")
|
137 |
|
138 |
with st.form("questionaire"):
|
139 |
country = st.selectbox("Country",data['location'].unique())# user's input
|
140 |
+
recovery = st.slider("How long Monkeypox recover?", 21, 31, 21)
|
141 |
+
R0 = st.slider("Basic Reproduction Number (R0)", 0.57, 3.00, 0.57)# user's input
|
142 |
country_code = code[country][0]
|
143 |
+
range = len(all_location['OWID_WRL']['total_cases'])
|
144 |
+
rmpe = mean_absolute_percentage_error(scaler,i[0:range])
|
145 |
# clicked==True only when the button is clicked
|
146 |
clicked = st.form_submit_button("Show Graph")
|
147 |
if clicked:
|
148 |
|
149 |
# Show SIR
|
150 |
+
SIR_param = SIR(country_code,R0,recovery)
|
151 |
|
152 |
st.pyplot(SIR_param[-1])
|
153 |
+
st.pyplot(compare_plt(country_code))
|
154 |
st.success("SIR model parameters for "+str(country)+" is")
|
155 |
st.success("R0 = "+str(SIR_param[0]))
|
156 |
st.success("Beta = "+str(SIR_param[2]))
|
157 |
st.success("Gamma = "+str(SIR_param[3]))
|
158 |
+
st.success("RMPE = "+str(SIR_param[4]+"%"))
|
159 |
|
160 |
# Run main()
|
161 |
if __name__ == "__main__":
|