Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
|
@@ -1,165 +0,0 @@
|
|
| 1 |
-
import pandas as pd
|
| 2 |
-
import streamlit as st
|
| 3 |
-
import numpy as np
|
| 4 |
-
from scipy.integrate import odeint
|
| 5 |
-
import matplotlib.pyplot as plt
|
| 6 |
-
from sklearn.metrics import mean_absolute_percentage_error
|
| 7 |
-
import warnings
|
| 8 |
-
warnings.filterwarnings("ignore")
|
| 9 |
-
|
| 10 |
-
#read files
|
| 11 |
-
data = pd.read_csv('owid-monkeypox-data.csv')
|
| 12 |
-
data = data[['location','iso_code','date','new_cases','total_cases','new_deaths','total_deaths']]
|
| 13 |
-
|
| 14 |
-
pop = pd.read_csv('API_SP.POP.TOTL_DS2_en_csv_v2_4578059.csv')
|
| 15 |
-
#preprocessiong data
|
| 16 |
-
all_location = {}
|
| 17 |
-
for i in data['iso_code'].unique():
|
| 18 |
-
all_location[i] = data[data['iso_code'] == i].reset_index(drop=True)
|
| 19 |
-
|
| 20 |
-
popu = pop[['Country Code','2021']].to_dict('index')
|
| 21 |
-
pop_dict = {}
|
| 22 |
-
for i in popu.values():
|
| 23 |
-
pop_dict[i['Country Code']] = i['2021']
|
| 24 |
-
|
| 25 |
-
pop_dict['GLP'] = 400000
|
| 26 |
-
pop_dict['MTQ'] = 376480
|
| 27 |
-
pop_dict['OWID_WRL'] = 7836630792
|
| 28 |
-
|
| 29 |
-
code = dict(data.groupby('location')['iso_code'].unique())
|
| 30 |
-
|
| 31 |
-
# SIR model differential equations.
|
| 32 |
-
def deriv(x, t, beta, gamma):
|
| 33 |
-
s, i, r = x
|
| 34 |
-
dsdt = -beta * s * i
|
| 35 |
-
didt = beta * s * i - gamma * i
|
| 36 |
-
drdt = gamma * i
|
| 37 |
-
return [dsdt, didt, drdt]
|
| 38 |
-
|
| 39 |
-
#plot model
|
| 40 |
-
def plotdata(t, s, i,r,R0, e=None):
|
| 41 |
-
# plot the data
|
| 42 |
-
fig = plt.figure(figsize=(12,6))
|
| 43 |
-
ax = [fig.add_subplot(221, axisbelow=True),
|
| 44 |
-
fig.add_subplot(223),
|
| 45 |
-
fig.add_subplot(122)]
|
| 46 |
-
|
| 47 |
-
ax[0].plot(t, s, lw=3, label='Fraction Susceptible')
|
| 48 |
-
ax[0].plot(t, i, lw=3, label='Fraction Infective')
|
| 49 |
-
ax[0].plot(t, r, lw=3, label='Recovered')
|
| 50 |
-
ax[0].set_title('Susceptible and Recovered Populations')
|
| 51 |
-
ax[0].set_xlabel('Time /days')
|
| 52 |
-
ax[0].set_ylabel('Fraction')
|
| 53 |
-
|
| 54 |
-
ax[1].plot(t, i, lw=3, label='Infective')
|
| 55 |
-
ax[1].set_title('Infectious Population')
|
| 56 |
-
if e is not None: ax[1].plot(t, e, lw=3, label='Exposed')
|
| 57 |
-
ax[1].set_ylim(0, 1.0)
|
| 58 |
-
ax[1].set_xlabel('Time /days')
|
| 59 |
-
ax[1].set_ylabel('Fraction')
|
| 60 |
-
|
| 61 |
-
ax[2].plot(s, i, lw=3, label='s, i trajectory')
|
| 62 |
-
ax[2].plot([1/R0, 1/R0], [0, 1], '--', lw=3, label='di/dt = 0')
|
| 63 |
-
ax[2].plot(s[0], i[0], '.', ms=20, label='Initial Condition')
|
| 64 |
-
ax[2].plot(s[-1], i[-1], '.', ms=20, label='Final Condition')
|
| 65 |
-
ax[2].set_title('State Trajectory')
|
| 66 |
-
ax[2].set_aspect('equal')
|
| 67 |
-
ax[2].set_ylim(0, 1.05)
|
| 68 |
-
ax[2].set_xlim(0, 1.05)
|
| 69 |
-
ax[2].set_xlabel('Susceptible')
|
| 70 |
-
ax[2].set_ylabel('Infectious')
|
| 71 |
-
|
| 72 |
-
for a in ax:
|
| 73 |
-
a.grid(True)
|
| 74 |
-
a.legend()
|
| 75 |
-
|
| 76 |
-
plt.tight_layout()
|
| 77 |
-
|
| 78 |
-
return fig
|
| 79 |
-
|
| 80 |
-
def compare_plt(country,i,pop):
|
| 81 |
-
fig = plt.figure(figsize=(12,6))
|
| 82 |
-
ax = [fig.add_subplot(121, axisbelow=True),fig.add_subplot(122)]
|
| 83 |
-
ax[0].set_title('Monkeypox confirmed cases')
|
| 84 |
-
ax[0].plot(all_location[country]['total_cases'],lw=3,label='Infective')
|
| 85 |
-
ax[0].set_xlabel('Days')
|
| 86 |
-
ax[0].set_ylabel('Number of cases')
|
| 87 |
-
ax[0].legend()
|
| 88 |
-
|
| 89 |
-
scaler = all_location[country]['total_cases'].apply(lambda x : x/pop)
|
| 90 |
-
ax[1].set_title('Monkeypox confirmed cases compare with model')
|
| 91 |
-
ax[1].plot(scaler,lw=3,label='Real Infective')
|
| 92 |
-
ax[1].plot(i,lw=3,label='SIR model Infective')
|
| 93 |
-
ax[1].set_ylim(0,0.00005)
|
| 94 |
-
ax[1].set_xlim(0,200)
|
| 95 |
-
ax[1].set_xlabel('Days')
|
| 96 |
-
ax[1].set_ylabel('Fraction Number of cases')
|
| 97 |
-
ax[1].legend()
|
| 98 |
-
plt.tight_layout()
|
| 99 |
-
|
| 100 |
-
return fig
|
| 101 |
-
|
| 102 |
-
#final model
|
| 103 |
-
def SIR(country,R0,t_infective,pop):
|
| 104 |
-
#R0 = 0.57 - 1.25
|
| 105 |
-
|
| 106 |
-
# parameter values
|
| 107 |
-
R0 = R0
|
| 108 |
-
t_infective = t_infective
|
| 109 |
-
|
| 110 |
-
# initial number of infected and recovered individuals
|
| 111 |
-
i_initial = all_location[country]['total_cases'].iloc[0]/pop
|
| 112 |
-
r_initial = 0.00
|
| 113 |
-
s_initial = 1 - i_initial - r_initial
|
| 114 |
-
|
| 115 |
-
gamma = 1/t_infective
|
| 116 |
-
beta = R0*gamma
|
| 117 |
-
|
| 118 |
-
t = np.linspace(0, 3000, 3000)
|
| 119 |
-
x_initial = s_initial, i_initial, r_initial
|
| 120 |
-
soln = odeint(deriv, x_initial, t, args=(beta, gamma))
|
| 121 |
-
s, i, r = soln.T
|
| 122 |
-
e = None
|
| 123 |
-
|
| 124 |
-
scaler = all_location[country]['total_cases'].apply(lambda x : x/pop)
|
| 125 |
-
rangee = len(all_location[country]['total_cases'])
|
| 126 |
-
rmpe = mean_absolute_percentage_error(scaler,i[0:rangee])*100
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
return R0,t_infective,beta,gamma,rmpe,plotdata(t, s, i,r,R0),compare_plt(country,i,pop)
|
| 130 |
-
|
| 131 |
-
def main():
|
| 132 |
-
st.title("SIR Model for Monkeypox in Thailand")
|
| 133 |
-
st.subheader("Latest updated : 10/02/2023")
|
| 134 |
-
st.subheader("Reference : https://jckantor.github.io/CBE30338/03.09-COVID-19.html")
|
| 135 |
-
st.caption("Display graph of SIR model of monkeypox and comparison between the model and actual data. Try to find the best R0 that fit for the actual data (lowest MAPE).")
|
| 136 |
-
|
| 137 |
-
with st.form("questionaire"):
|
| 138 |
-
recovery = st.slider("How long Monkeypox last until recovery(days)? ", 14, 31, 21)
|
| 139 |
-
R0 = st.slider("Basic Reproduction Number (R0)", 0.57, 3.00, 0.57)# user's input
|
| 140 |
-
country_code = code["Thailand"][0]
|
| 141 |
-
pop = pop_dict[country_code]
|
| 142 |
-
|
| 143 |
-
# clicked==True only when the button is clicked
|
| 144 |
-
clicked = st.form_submit_button("Show Graph")
|
| 145 |
-
if clicked:
|
| 146 |
-
|
| 147 |
-
# Show SIR
|
| 148 |
-
SIR_param = SIR(country_code,R0,recovery,pop)
|
| 149 |
-
|
| 150 |
-
if SIR_param[0] <= 1:
|
| 151 |
-
a = 'No epidemic.'
|
| 152 |
-
else:
|
| 153 |
-
a = 'Epidemic has began.'
|
| 154 |
-
|
| 155 |
-
st.pyplot(SIR_param[-2])
|
| 156 |
-
st.pyplot(SIR_param[-1])
|
| 157 |
-
st.success("SIR model parameters of Thailand "+" is")
|
| 158 |
-
st.success("R0 (Basic Reproduction Number) = "+str(SIR_param[0])+' '+a)
|
| 159 |
-
st.success("Beta (Rate of transmission) = "+str(round(SIR_param[2],3)))
|
| 160 |
-
st.success("Gamma (Rate of Recovery) = "+str(round(SIR_param[3],3)))
|
| 161 |
-
st.success("MAPE = "+str(round(SIR_param[4],3))+"%")
|
| 162 |
-
|
| 163 |
-
# Run main()
|
| 164 |
-
if __name__ == "__main__":
|
| 165 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|