import pandas as pd import streamlit as st import numpy as np from scipy.integrate import odeint import matplotlib.pyplot as plt from sklearn.metrics import mean_absolute_percentage_error import warnings warnings.filterwarnings("ignore") #read files data = pd.read_csv('owid-monkeypox-data.csv') data = data[['location','iso_code','date','new_cases','total_cases','new_deaths','total_deaths']] pop = pd.read_csv('API_SP.POP.TOTL_DS2_en_csv_v2_4578059.csv') #preprocessiong data all_location = {} for i in data['iso_code'].unique(): all_location[i] = data[data['iso_code'] == i].reset_index(drop=True) popu = pop[['Country Code','2021']].to_dict('index') pop_dict = {} for i in popu.values(): pop_dict[i['Country Code']] = i['2021'] pop_dict['GLP'] = 400000 pop_dict['MTQ'] = 376480 pop_dict['OWID_WRL'] = 7836630792 code = dict(data.groupby('location')['iso_code'].unique()) # SIR model differential equations. def deriv(x, t, beta, gamma): s, i, r = x dsdt = -beta * s * i didt = beta * s * i - gamma * i drdt = gamma * i return [dsdt, didt, drdt] #plot model def plotdata(t, s, i,r,R0, e=None): # plot the data fig = plt.figure(figsize=(12,6)) ax = [fig.add_subplot(221, axisbelow=True), fig.add_subplot(223), fig.add_subplot(122)] ax[0].plot(t, s, lw=3, label='Fraction Susceptible') ax[0].plot(t, i, lw=3, label='Fraction Infective') ax[0].plot(t, r, lw=3, label='Recovered') ax[0].set_title('Susceptible and Recovered Populations') ax[0].set_xlabel('Time /days') ax[0].set_ylabel('Fraction') ax[1].plot(t, i, lw=3, label='Infective') ax[1].set_title('Infectious Population') if e is not None: ax[1].plot(t, e, lw=3, label='Exposed') ax[1].set_ylim(0, 1.0) ax[1].set_xlabel('Time /days') ax[1].set_ylabel('Fraction') ax[2].plot(s, i, lw=3, label='s, i trajectory') ax[2].plot([1/R0, 1/R0], [0, 1], '--', lw=3, label='di/dt = 0') ax[2].plot(s[0], i[0], '.', ms=20, label='Initial Condition') ax[2].plot(s[-1], i[-1], '.', ms=20, label='Final Condition') ax[2].set_title('State Trajectory') ax[2].set_aspect('equal') ax[2].set_ylim(0, 1.05) ax[2].set_xlim(0, 1.05) ax[2].set_xlabel('Susceptible') ax[2].set_ylabel('Infectious') for a in ax: a.grid(True) a.legend() plt.tight_layout() return fig def compare_plt(country,i,pop): fig = plt.figure(figsize=(12,6)) ax = [fig.add_subplot(121, axisbelow=True),fig.add_subplot(122)] ax[0].set_title('Monkeypox confirmed cases') ax[0].plot(all_location[country]['total_cases'],lw=3,label='Infective') ax[0].set_xlabel('Days') ax[0].set_ylabel('Number of cases') ax[0].legend() scaler = all_location[country]['total_cases'].apply(lambda x : x/pop) ax[1].set_title('Monkeypox confirmed cases compare with model') ax[1].plot(scaler,lw=3,label='Real Infective') ax[1].plot(i,lw=3,label='SIR model Infective') ax[1].set_ylim(0,0.00005) ax[1].set_xlim(0,200) ax[1].set_xlabel('Days') ax[1].set_ylabel('Fraction Number of cases') ax[1].legend() plt.tight_layout() return fig #final model def SIR(country,R0,t_infective,pop): #R0 = 0.57 - 1.25 # parameter values R0 = R0 t_infective = t_infective # initial number of infected and recovered individuals i_initial = all_location[country]['total_cases'].iloc[0]/pop r_initial = 0.00 s_initial = 1 - i_initial - r_initial gamma = 1/t_infective beta = R0*gamma t = np.linspace(0, 3000, 3000) x_initial = s_initial, i_initial, r_initial soln = odeint(deriv, x_initial, t, args=(beta, gamma)) s, i, r = soln.T e = None scaler = all_location[country]['total_cases'].apply(lambda x : x/pop) rangee = len(all_location[country]['total_cases']) rmpe = mean_absolute_percentage_error(scaler,i[0:rangee]) return R0,t_infective,beta,gamma,rmpe,plotdata(t, s, i,r,R0),compare_plt(country,i,pop) def main(): st.title("SIR Model for Monkeypox") with st.form("questionaire"): country = st.selectbox("Country",data['location'].unique())# user's input recovery = st.slider("How long Monkeypox recover?", 21, 31, 21) R0 = st.slider("Basic Reproduction Number (R0)", 0.57, 3.00, 0.57)# user's input country_code = code[country][0] pop = pop_dict[country_code] # clicked==True only when the button is clicked clicked = st.form_submit_button("Show Graph") if clicked: # Show SIR SIR_param = SIR(country_code,R0,recovery,pop) st.pyplot(SIR_param[-2]) st.pyplot(SIR_param[-1]) st.success("SIR model parameters for "+str(country)+" is") st.success("R0 = "+str(SIR_param[0])) st.success("Beta = "+str(SIR_param[2])) st.success("Gamma = "+str(SIR_param[3])) st.success("RMPE = "+str(SIR_param[4])+"%") # Run main() if __name__ == "__main__": main()