Upload trainset_preprocess_pipeline_print.py
Browse files
trainset_preprocess_pipeline_print.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys, os, multiprocessing
|
2 |
+
from scipy import signal
|
3 |
+
|
4 |
+
now_dir = os.getcwd()
|
5 |
+
sys.path.append(now_dir)
|
6 |
+
|
7 |
+
inp_root = sys.argv[1]
|
8 |
+
sr = int(sys.argv[2])
|
9 |
+
n_p = int(sys.argv[3])
|
10 |
+
exp_dir = sys.argv[4]
|
11 |
+
noparallel = sys.argv[5] == "True"
|
12 |
+
import numpy as np, os, traceback
|
13 |
+
from slicer2 import Slicer
|
14 |
+
import librosa, traceback
|
15 |
+
from scipy.io import wavfile
|
16 |
+
import multiprocessing
|
17 |
+
from my_utils import load_audio
|
18 |
+
|
19 |
+
mutex = multiprocessing.Lock()
|
20 |
+
f = open("%s/preprocess.log" % exp_dir, "a+")
|
21 |
+
|
22 |
+
|
23 |
+
def println(strr):
|
24 |
+
mutex.acquire()
|
25 |
+
print(strr)
|
26 |
+
f.write("%s\n" % strr)
|
27 |
+
f.flush()
|
28 |
+
mutex.release()
|
29 |
+
|
30 |
+
|
31 |
+
class PreProcess:
|
32 |
+
def __init__(self, sr, exp_dir):
|
33 |
+
self.slicer = Slicer(
|
34 |
+
sr=sr,
|
35 |
+
threshold=-42,
|
36 |
+
min_length=1500,
|
37 |
+
min_interval=400,
|
38 |
+
hop_size=15,
|
39 |
+
max_sil_kept=500,
|
40 |
+
)
|
41 |
+
self.sr = sr
|
42 |
+
self.bh, self.ah = signal.butter(N=5, Wn=48, btype="high", fs=self.sr)
|
43 |
+
self.per = 3.0
|
44 |
+
self.overlap = 0.3
|
45 |
+
self.tail = self.per + self.overlap
|
46 |
+
self.max = 0.9
|
47 |
+
self.alpha = 0.75
|
48 |
+
self.exp_dir = exp_dir
|
49 |
+
self.gt_wavs_dir = "%s/0_gt_wavs" % exp_dir
|
50 |
+
self.wavs16k_dir = "%s/1_16k_wavs" % exp_dir
|
51 |
+
os.makedirs(self.exp_dir, exist_ok=True)
|
52 |
+
os.makedirs(self.gt_wavs_dir, exist_ok=True)
|
53 |
+
os.makedirs(self.wavs16k_dir, exist_ok=True)
|
54 |
+
|
55 |
+
def norm_write(self, tmp_audio, idx0, idx1):
|
56 |
+
tmp_max = np.abs(tmp_audio).max()
|
57 |
+
if tmp_max > 2.5:
|
58 |
+
print("%s-%s-%s-filtered" % (idx0, idx1, tmp_max))
|
59 |
+
return
|
60 |
+
tmp_audio = (tmp_audio / tmp_max * (self.max * self.alpha)) + (
|
61 |
+
1 - self.alpha
|
62 |
+
) * tmp_audio
|
63 |
+
wavfile.write(
|
64 |
+
"%s/%s_%s.wav" % (self.gt_wavs_dir, idx0, idx1),
|
65 |
+
self.sr,
|
66 |
+
tmp_audio.astype(np.float32),
|
67 |
+
)
|
68 |
+
tmp_audio = librosa.resample(
|
69 |
+
tmp_audio, orig_sr=self.sr, target_sr=16000
|
70 |
+
) # , res_type="soxr_vhq"
|
71 |
+
wavfile.write(
|
72 |
+
"%s/%s_%s.wav" % (self.wavs16k_dir, idx0, idx1),
|
73 |
+
16000,
|
74 |
+
tmp_audio.astype(np.float32),
|
75 |
+
)
|
76 |
+
|
77 |
+
def pipeline(self, path, idx0):
|
78 |
+
try:
|
79 |
+
audio = load_audio(path, self.sr)
|
80 |
+
# zero phased digital filter cause pre-ringing noise...
|
81 |
+
# audio = signal.filtfilt(self.bh, self.ah, audio)
|
82 |
+
audio = signal.lfilter(self.bh, self.ah, audio)
|
83 |
+
|
84 |
+
idx1 = 0
|
85 |
+
for audio in self.slicer.slice(audio):
|
86 |
+
i = 0
|
87 |
+
while 1:
|
88 |
+
start = int(self.sr * (self.per - self.overlap) * i)
|
89 |
+
i += 1
|
90 |
+
if len(audio[start:]) > self.tail * self.sr:
|
91 |
+
tmp_audio = audio[start : start + int(self.per * self.sr)]
|
92 |
+
self.norm_write(tmp_audio, idx0, idx1)
|
93 |
+
idx1 += 1
|
94 |
+
else:
|
95 |
+
tmp_audio = audio[start:]
|
96 |
+
idx1 += 1
|
97 |
+
break
|
98 |
+
self.norm_write(tmp_audio, idx0, idx1)
|
99 |
+
println("%s->Suc." % path)
|
100 |
+
except:
|
101 |
+
println("%s->%s" % (path, traceback.format_exc()))
|
102 |
+
|
103 |
+
def pipeline_mp(self, infos):
|
104 |
+
for path, idx0 in infos:
|
105 |
+
self.pipeline(path, idx0)
|
106 |
+
|
107 |
+
def pipeline_mp_inp_dir(self, inp_root, n_p):
|
108 |
+
try:
|
109 |
+
infos = [
|
110 |
+
("%s/%s" % (inp_root, name), idx)
|
111 |
+
for idx, name in enumerate(sorted(list(os.listdir(inp_root))))
|
112 |
+
]
|
113 |
+
if noparallel:
|
114 |
+
for i in range(n_p):
|
115 |
+
self.pipeline_mp(infos[i::n_p])
|
116 |
+
else:
|
117 |
+
ps = []
|
118 |
+
for i in range(n_p):
|
119 |
+
p = multiprocessing.Process(
|
120 |
+
target=self.pipeline_mp, args=(infos[i::n_p],)
|
121 |
+
)
|
122 |
+
ps.append(p)
|
123 |
+
p.start()
|
124 |
+
for i in range(n_p):
|
125 |
+
ps[i].join()
|
126 |
+
except:
|
127 |
+
println("Fail. %s" % traceback.format_exc())
|
128 |
+
|
129 |
+
|
130 |
+
def preprocess_trainset(inp_root, sr, n_p, exp_dir):
|
131 |
+
pp = PreProcess(sr, exp_dir)
|
132 |
+
println("start preprocess")
|
133 |
+
println(sys.argv)
|
134 |
+
pp.pipeline_mp_inp_dir(inp_root, n_p)
|
135 |
+
println("end preprocess")
|
136 |
+
|
137 |
+
|
138 |
+
if __name__ == "__main__":
|
139 |
+
preprocess_trainset(inp_root, sr, n_p, exp_dir)
|