import gradio as gr import sentence_transformers from sentence_transformers import SentenceTransformer import torch from sentence_transformers.util import semantic_search import pandas as pd model = SentenceTransformer('JoBeer/all-mpnet-base-v2-eclass') corpus = pd.read_excel('corpus.xlsx') def predict(name, description): text = 'Description: '+ description + '; Name: ' + name query_embedding = model.encode(text, convert_to_tensor=True) corpus_embeddings = torch.Tensor(corpus["embeddings"]) output = sentence_transformers.util.semantic_search(query_embedding, corpus_embeddings, top_k = 5) preferedName1 = corpus.iloc[output[0][0].get('corpus_id'),2] definition1 = corpus.iloc[output[0][0].get('corpus_id'),1] IRDI1 = corpus.iloc[output[0][0].get('corpus_id'),4] score1 = output[0][0].get('score') return preferedName1, definition1, IRDI1, score1 interface = gr.Interface(fn = predict, inputs = [gr.Textbox(label="Name:", placeholder="z.B. GTIN", lines=1), gr.Textbox(label="Description:", placeholder="z.B. Globel Trade Item Number", lines=1)], outputs = [gr.Textbox(label = 'preferedName'),gr.Textbox(label = 'definition'), gr.Textbox(label = 'IDRI'),gr.Textbox(label = 'score')], #examples=[['GTIN', 'Globel Trade Item Number']], theme = 'huggingface', title = 'ECLASS-Property-Search') interface.launch()