from diffusers import AutoPipelineForText2Image import torch import gradio as gr from PIL import Image import os, random from diffusers.utils import load_image from accelerate import Accelerator accelerator = Accelerator() models =[ "prompthero/midjourney-v4-diffusion", "nitrosocke/classic-anim-diffusion", "stablediffusionapi/disney-pixal-cartoon", "stablediffusionapi/edge-of-realism", "sd-dreambooth-library/original-character-cyclps", "AIArtsChannel/steampunk-diffusion", "nitrosocke/mo-di-diffusion", "MirageML/fantasy-scene", "wavymulder/lomo-diffusion", "sd-dreambooth-library/fashion", "DucHaiten/DucHaitenDreamWorld", "VegaKH/Ultraskin", "kandinsky-community/kandinsky-2-1", "plasmo/woolitize-768sd1-5", "plasmo/food-crit", "johnslegers/epic-diffusion-v1.1", "robotjung/SemiRealMix", "prompthero/linkedin-diffusion", "RayHell/popupBook-diffusion", "MirageML/lowpoly-world", "warp-ai/wuerstchen", "deadman44/SD_Photoreal_Merged_Models", "johnslegers/epic-diffusion", "wavymulder/modelshoot", "Fictiverse/Stable_Diffusion_VoxelArt_Model", "nousr/robo-diffusion-2-base", "darkstorm2150/Protogen_v2.2_Official_Release", "hassanblend/HassanBlend1.5.1.2", "hassanblend/hassanblend1.4", "nitrosocke/redshift-diffusion", "prompthero/openjourney-v2", "nitrosocke/Arcane-Diffusion", "Lykon/DreamShaper", "wavymulder/Analog-Diffusion", "dreamlike-art/dreamlike-diffusion-1.0", "dreamlike-art/dreamlike-photoreal-2.0", "digiplay/RealismEngine_v1", "digiplay/AIGEN_v1.4_diffusers", "stablediffusionapi/dreamshaper-v6", "axolotron/ice-cream-animals", "TheLastBen/froggy-style-v21-768", "FloydianSound/Nixeu_Diffusion_v1-5", "digiplay/PotoPhotoRealism_v1", ] bor = len(models) current = random.randint(1, bor) def plex(prompt,modil): pipe = accelerator.prepare(AutoPipelineForText2Image.from_pretrained(""+modil+"", torch_dtype=torch.float32)) pipe = accelerator.prepare(pipe.to("cpu")) image = pipe(prompt=prompt, num_inference_steps=10).images[0] return image iface = gr.Interface(fn=plex,outputs=gr.Image(label="Generated Output Image"),inputs=[gr.Dropdown(choices=models, type="value", value=models[current]), gr.Textbox(label="Prompt"), gr.Textbox(label="negative_prompt", value="low quality, bad quality")])], title="AutoPipelineForText2Image_SD_Multi",description="AutoPipelineForText2Image_SD_Multi") iface.queue(max_size=1) iface.launch(max_threads=1)