Spaces:
Sleeping
Sleeping
File size: 6,712 Bytes
cd7c888 67a30fe cd7c888 4322149 67a30fe cd7c888 67a30fe cd7c888 8d13cb3 b51eae1 8d13cb3 cd7c888 67a30fe 8d13cb3 67a30fe cd7c888 1f3827e 8ba2be3 1f3827e cd7c888 8d13cb3 cd7c888 1f3827e 92dfb7c 5a63c31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
from diffusers import DPMSolverMultistepScheduler
import gradio as gr
from PIL import Image
import cv2
import qrcode
import os, random, gc
import numpy as np
from transformers import pipeline
import PIL.Image
from diffusers.utils import load_image
from accelerate import Accelerator
from diffusers import StableDiffusionPipeline
import torch
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
accelerator = Accelerator(cpu=True)
models =[
"runwayml/stable-diffusion-v1-5",
"prompthero/openjourney-v4",
"CompVis/stable-diffusion-v1-4",
"stabilityai/stable-diffusion-2-1",
"stablediffusionapi/disney-pixal-cartoon",
"stablediffusionapi/edge-of-realism",
"MirageML/fantasy-scene",
"wavymulder/lomo-diffusion",
"sd-dreambooth-library/fashion",
"DucHaiten/DucHaitenDreamWorld",
"VegaKH/Ultraskin",
"kandinsky-community/kandinsky-2-1",
"MirageML/lowpoly-cyberpunk",
"thehive/everyjourney-sdxl-0.9-finetuned",
"plasmo/woolitize-768sd1-5",
"plasmo/food-crit",
"johnslegers/epic-diffusion-v1.1",
"Fictiverse/ElRisitas",
"robotjung/SemiRealMix",
"herpritts/FFXIV-Style",
"prompthero/linkedin-diffusion",
"RayHell/popupBook-diffusion",
"MirageML/lowpoly-world",
"deadman44/SD_Photoreal_Merged_Models",
"Conflictx/CGI_Animation",
"johnslegers/epic-diffusion",
"tilake/China-Chic-illustration",
"wavymulder/modelshoot",
"prompthero/openjourney-lora",
"Fictiverse/Stable_Diffusion_VoxelArt_Model",
"darkstorm2150/Protogen_v2.2_Official_Release",
"hassanblend/HassanBlend1.5.1.2",
"hassanblend/hassanblend1.4",
"nitrosocke/redshift-diffusion",
"prompthero/openjourney-v2",
"nitrosocke/Arcane-Diffusion",
"Lykon/DreamShaper",
"wavymulder/Analog-Diffusion",
"nitrosocke/mo-di-diffusion",
"dreamlike-art/dreamlike-diffusion-1.0",
"dreamlike-art/dreamlike-photoreal-2.0",
"digiplay/RealismEngine_v1",
"digiplay/AIGEN_v1.4_diffusers",
"stablediffusionapi/dreamshaper-v6",
"JackAnon/GorynichMix",
"p1atdev/liminal-space-diffusion",
"nadanainone/gigaschizonegs",
"darkVOYAGE/dvMJv4",
"lckidwell/album-cover-style",
"axolotron/ice-cream-animals",
"perion/ai-avatar",
"digiplay/GhostMix",
"ThePioneer/MISA",
"TheLastBen/froggy-style-v21-768",
"FloydianSound/Nixeu_Diffusion_v1-5",
"kakaobrain/karlo-v1-alpha-image-variations",
"digiplay/PotoPhotoRealism_v1",
"ConsistentFactor/Aurora-By_Consistent_Factor",
"rim0/quadruped_mechas",
"Akumetsu971/SD_Samurai_Anime_Model",
"Bojaxxx/Fantastic-Mr-Fox-Diffusion",
"sd-dreambooth-library/original-character-cyclps",
"AIArtsChannel/steampunk-diffusion",
]
controlnet = accelerator.prepare(ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float32))
def plex(qr_code_value, text, neg_prompt, modil, one, two, three):
gc.collect()
apol=[]
modal=""+modil+""
pipe = accelerator.prepare(StableDiffusionControlNetPipeline.from_pretrained(modal, controlnet=controlnet, torch_dtype=torch.float32, use_safetensors=False, safety_checker=None))
pipe.unet.to(memory_format=torch.channels_last)
pipe.scheduler = accelerator.prepare(DPMSolverMultistepScheduler.from_config(pipe.scheduler.config))
pipe = pipe.to("cpu")
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
prompt = text
qr_code = qrcode.make(qr_code_value).resize((512, 512))
rmage = load_image(qr_code)
original = rmage.convert("RGB")
original.thumbnail((512, 512))
cannyimage = load_image(original).resize((512,512))
cannyimage = np.array(cannyimage)
pannyimage = load_image(original).resize((512,512))
pannyimage = np.array(pannyimage)
pannyimage = np.invert(pannyimage)
pannyimage = Image.fromarray(pannyimage)
low_threshold = 100
high_threshold = 200
cannyimage = cv2.Canny(cannyimage, low_threshold, high_threshold)
cannyimage = cannyimage[:, :, None]
cannyimage = np.concatenate([cannyimage, cannyimage, cannyimage], axis=2)
cannyimage = Image.fromarray(cannyimage)
images = [cannyimage]
generator = torch.Generator(device="cpu").manual_seed(random.randint(1, 4836923))
imzge = pipe(prompt,original,num_inference_steps=one,generator=generator,strength=two,negative_prompt=neg_prompt,controlnet_conditioning_scale=three,).images[0]
apol.append(imzge)
image = pipe([prompt]*2,images,num_inference_steps=one,generator=generator,strength=two,negative_prompt=[neg_prompt]*2,controlnet_conditioning_scale=three,)
for i, imge in enumerate(image["images"]):
apol.append(imge)
img = load_image(imge)
img.save('./image.png', 'PNG')
img = img.resize((512, 512))
img = img.convert("RGBA")
img.save('./image.png', 'PNG')
iog = load_image(original)
iog.save('./imoge.png', 'PNG')
iog = iog.resize((512, 512))
iog = iog.convert("RGBA")
iog.save('./imoge.png', 'PNG')
doto = iog.getdata()
new_data = []
for item in doto:
if item[0] in list(range(200, 256)):
new_data.append((255, 255, 255, 0))
else:
new_data.append(item)
iog.putdata(new_data)
iog.save('./image.png', 'PNG')
pixel_data1 = list(iog.getdata())
pixel_data2 = list(img.getdata())
new_pixel_data = [pixel if pixel[3] > 0 else pixel_data2[i] for i, pixel in enumerate(pixel_data1)]
if i==1:
new_imoge = Image.new("RGBA", img.size)
new_imoge.putdata(new_pixel_data)
new_imoge.save('./new_imoge.png', 'PNG')
apol.append(new_imoge)
else:
new_image = Image.new("RGBA", img.size)
new_image.putdata(new_pixel_data)
new_image.save('./new_image.png', 'PNG')
apol.append(new_image)
apol.append(original)
apol.append(cannyimage)
apol.append(pannyimage)
return apol
iface = gr.Interface(fn=plex, inputs=[gr.Textbox(label="QR Code URL"),gr.Textbox(label="prompt"),gr.Textbox(label="neg prompt"),gr.Dropdown(choices=models, label="some sd models", value=models[0], type="value"), gr.Slider(label="num inference steps", minimum=1, step=1, maximum=5, value=5), gr.Slider(label="prompt strength", minimum=0.01, step=0.01, maximum=0.99, value=0.20), gr.Slider(label="controlnet scale", minimum=0.01, step=0.01, maximum=0.99, value=0.80)], outputs=gr.Gallery(label="out", columns=2),description="Running on cpu, very slow! by JoPmt.")
iface.queue(max_size=1,api_open=False)
iface.launch(max_threads=1) |