File size: 6,712 Bytes
cd7c888
 
 
 
 
67a30fe
cd7c888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4322149
67a30fe
cd7c888
 
 
67a30fe
cd7c888
 
 
 
 
 
 
 
 
 
8d13cb3
 
b51eae1
8d13cb3
cd7c888
 
 
 
 
 
 
67a30fe
8d13cb3
 
 
67a30fe
cd7c888
1f3827e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ba2be3
1f3827e
 
 
 
 
 
 
 
 
cd7c888
 
8d13cb3
cd7c888
 
1f3827e
92dfb7c
5a63c31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
from diffusers import DPMSolverMultistepScheduler
import gradio as gr
from PIL import Image
import cv2
import qrcode
import os, random, gc
import numpy as np
from transformers import pipeline
import PIL.Image
from diffusers.utils import load_image
from accelerate import Accelerator
from diffusers import StableDiffusionPipeline
import torch
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel

accelerator = Accelerator(cpu=True)
models =[
    "runwayml/stable-diffusion-v1-5",
    "prompthero/openjourney-v4",
    "CompVis/stable-diffusion-v1-4",
    "stabilityai/stable-diffusion-2-1",
    "stablediffusionapi/disney-pixal-cartoon",
    "stablediffusionapi/edge-of-realism",
    "MirageML/fantasy-scene",
    "wavymulder/lomo-diffusion",
    "sd-dreambooth-library/fashion",
    "DucHaiten/DucHaitenDreamWorld",
    "VegaKH/Ultraskin",
    "kandinsky-community/kandinsky-2-1",
    "MirageML/lowpoly-cyberpunk",
    "thehive/everyjourney-sdxl-0.9-finetuned",
    "plasmo/woolitize-768sd1-5",
    "plasmo/food-crit",
    "johnslegers/epic-diffusion-v1.1",
    "Fictiverse/ElRisitas",
    "robotjung/SemiRealMix",
    "herpritts/FFXIV-Style",
    "prompthero/linkedin-diffusion",
    "RayHell/popupBook-diffusion",
    "MirageML/lowpoly-world",
    "deadman44/SD_Photoreal_Merged_Models",
    "Conflictx/CGI_Animation",
    "johnslegers/epic-diffusion",
    "tilake/China-Chic-illustration",
    "wavymulder/modelshoot",
    "prompthero/openjourney-lora",
    "Fictiverse/Stable_Diffusion_VoxelArt_Model",
    "darkstorm2150/Protogen_v2.2_Official_Release",
    "hassanblend/HassanBlend1.5.1.2",
    "hassanblend/hassanblend1.4",
    "nitrosocke/redshift-diffusion",
    "prompthero/openjourney-v2",
    "nitrosocke/Arcane-Diffusion",
    "Lykon/DreamShaper",
    "wavymulder/Analog-Diffusion",
    "nitrosocke/mo-di-diffusion",
    "dreamlike-art/dreamlike-diffusion-1.0",
    "dreamlike-art/dreamlike-photoreal-2.0",
    "digiplay/RealismEngine_v1",
    "digiplay/AIGEN_v1.4_diffusers",
    "stablediffusionapi/dreamshaper-v6",
    "JackAnon/GorynichMix",
    "p1atdev/liminal-space-diffusion",
    "nadanainone/gigaschizonegs",
    "darkVOYAGE/dvMJv4",
    "lckidwell/album-cover-style",
    "axolotron/ice-cream-animals",
    "perion/ai-avatar",
    "digiplay/GhostMix",
    "ThePioneer/MISA",
    "TheLastBen/froggy-style-v21-768",
    "FloydianSound/Nixeu_Diffusion_v1-5",
    "kakaobrain/karlo-v1-alpha-image-variations",
    "digiplay/PotoPhotoRealism_v1",
    "ConsistentFactor/Aurora-By_Consistent_Factor",
    "rim0/quadruped_mechas",
    "Akumetsu971/SD_Samurai_Anime_Model",
    "Bojaxxx/Fantastic-Mr-Fox-Diffusion",
    "sd-dreambooth-library/original-character-cyclps",
    "AIArtsChannel/steampunk-diffusion",
]

controlnet = accelerator.prepare(ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float32))
def plex(qr_code_value, text, neg_prompt, modil, one, two, three):
    gc.collect()
    apol=[]
    modal=""+modil+""
    pipe = accelerator.prepare(StableDiffusionControlNetPipeline.from_pretrained(modal, controlnet=controlnet, torch_dtype=torch.float32, use_safetensors=False, safety_checker=None))
    pipe.unet.to(memory_format=torch.channels_last)
    pipe.scheduler = accelerator.prepare(DPMSolverMultistepScheduler.from_config(pipe.scheduler.config))
    pipe = pipe.to("cpu")
    negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
    prompt = text
    qr_code = qrcode.make(qr_code_value).resize((512, 512))
    rmage = load_image(qr_code)
    original = rmage.convert("RGB")
    original.thumbnail((512, 512))
    cannyimage = load_image(original).resize((512,512))
    cannyimage = np.array(cannyimage)
    pannyimage = load_image(original).resize((512,512))
    pannyimage = np.array(pannyimage)
    pannyimage = np.invert(pannyimage)
    pannyimage = Image.fromarray(pannyimage)
    low_threshold = 100
    high_threshold = 200
    cannyimage = cv2.Canny(cannyimage, low_threshold, high_threshold)
    cannyimage = cannyimage[:, :, None]
    cannyimage = np.concatenate([cannyimage, cannyimage, cannyimage], axis=2)
    cannyimage = Image.fromarray(cannyimage)
    images = [cannyimage]
    generator = torch.Generator(device="cpu").manual_seed(random.randint(1, 4836923))
    imzge = pipe(prompt,original,num_inference_steps=one,generator=generator,strength=two,negative_prompt=neg_prompt,controlnet_conditioning_scale=three,).images[0]
    apol.append(imzge)
    image = pipe([prompt]*2,images,num_inference_steps=one,generator=generator,strength=two,negative_prompt=[neg_prompt]*2,controlnet_conditioning_scale=three,)
    for i, imge in enumerate(image["images"]):
        apol.append(imge)

        img = load_image(imge)
        img.save('./image.png', 'PNG')
        img = img.resize((512, 512))
        img = img.convert("RGBA")
        img.save('./image.png', 'PNG')

        iog = load_image(original)
        iog.save('./imoge.png', 'PNG')
        iog = iog.resize((512, 512))
        iog = iog.convert("RGBA")
        iog.save('./imoge.png', 'PNG')
        doto = iog.getdata()
    
        new_data = []
        for item in doto:
            if item[0] in list(range(200, 256)):
                new_data.append((255, 255, 255, 0))
            else:
                new_data.append(item)
        iog.putdata(new_data)
        iog.save('./image.png', 'PNG')

        pixel_data1 = list(iog.getdata())
        pixel_data2 = list(img.getdata())

        new_pixel_data = [pixel if pixel[3] > 0 else pixel_data2[i] for i, pixel in enumerate(pixel_data1)]
        if i==1:
            new_imoge = Image.new("RGBA", img.size)
            new_imoge.putdata(new_pixel_data)
            new_imoge.save('./new_imoge.png', 'PNG')
            apol.append(new_imoge)
        else:
            new_image = Image.new("RGBA", img.size)
            new_image.putdata(new_pixel_data)
            new_image.save('./new_image.png', 'PNG')
            apol.append(new_image)
    apol.append(original)
    apol.append(cannyimage)
    apol.append(pannyimage)
    return apol

iface = gr.Interface(fn=plex, inputs=[gr.Textbox(label="QR Code URL"),gr.Textbox(label="prompt"),gr.Textbox(label="neg prompt"),gr.Dropdown(choices=models, label="some sd models", value=models[0], type="value"), gr.Slider(label="num inference steps", minimum=1, step=1, maximum=5, value=5), gr.Slider(label="prompt strength", minimum=0.01, step=0.01, maximum=0.99, value=0.20), gr.Slider(label="controlnet scale", minimum=0.01, step=0.01, maximum=0.99, value=0.80)], outputs=gr.Gallery(label="out", columns=2),description="Running on cpu, very slow! by JoPmt.")
iface.queue(max_size=1,api_open=False)
iface.launch(max_threads=1)