Spaces:
Runtime error
Runtime error
from PIL import Image | |
import gradio as gr | |
import numpy as np | |
import random, os, gc, base64, io | |
import cv2 | |
import torch | |
from accelerate import Accelerator | |
from transformers import pipeline, AutoModel, CLIPTextModel, CLIPTokenizer | |
from diffusers.utils import load_image | |
from diffusers import EulerDiscreteScheduler, UNet2DConditionModel, AutoencoderKL, DiffusionPipeline | |
from gradio_client import Client | |
accelerator = Accelerator(cpu=True) | |
pipe = accelerator.prepare(DiffusionPipeline.from_pretrained("stabilityai/sd-turbo", torch_dtype=torch.float32, use_safetensors=True, safety_checker=None)) | |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) | |
##pipe.text_encoder = CLIPTextModel._from_config(pipe.text_encoder.config) | |
##pipe.tokenizer = CLIPTokenizer.from_config(pipe.tokenizer.config) | |
##pipe.UNet2DConditionModel = UNet2DConditionModel.from_config("stabilityai/sd-turbo", subfolder="unet") | |
##pipe.AutoencoderKL = AutoencoderKL.from_config("stabilityai/sd-turbo", subfolder="vae") | |
pipe = accelerator.prepare(pipe.to("cpu")) | |
generator = torch.Generator("cpu").manual_seed(random.randint(1, 867346)) | |
apol=[] | |
def plex(prompt): | |
gc.collect() | |
apol=[] | |
imags = pipe(prompt=prompt,negative_prompt="bad quality",num_inference_steps=5,width=512,height=512,generator=generator).images[0] | |
apol.append(imags) | |
return apol | |
iface = gr.Interface(fn=plex,inputs=gr.Textbox(), outputs=gr.Gallery(columns=2), title="Img2Img_SkyV22CntrlNet_CPU", description="Running on CPU, very slow!") | |
iface.queue(max_size=1) | |
iface.launch(max_threads=1) |