Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,16 @@
|
|
1 |
from PIL import Image
|
2 |
import gradio as gr
|
3 |
-
import
|
4 |
-
import random, os, gc, base64, io
|
5 |
-
import cv2
|
6 |
import torch
|
7 |
from accelerate import Accelerator
|
8 |
-
from transformers import pipeline
|
9 |
from diffusers.utils import load_image
|
10 |
-
from diffusers import EulerDiscreteScheduler,
|
11 |
-
from gradio_client import Client
|
12 |
|
13 |
accelerator = Accelerator(cpu=True)
|
14 |
pipe = accelerator.prepare(DiffusionPipeline.from_pretrained("stabilityai/sd-turbo", torch_dtype=torch.float32, use_safetensors=True, safety_checker=None))
|
15 |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
|
16 |
-
|
17 |
-
##pipe.tokenizer = CLIPTokenizer.from_config(pipe.tokenizer.config)
|
18 |
-
##pipe.UNet2DConditionModel = UNet2DConditionModel.from_config("stabilityai/sd-turbo", subfolder="unet")
|
19 |
-
##pipe.AutoencoderKL = AutoencoderKL.from_config("stabilityai/sd-turbo", subfolder="vae")
|
20 |
pipe = accelerator.prepare(pipe.to("cpu"))
|
21 |
generator = torch.Generator("cpu").manual_seed(random.randint(1, 867346))
|
22 |
apol=[]
|
@@ -24,10 +18,11 @@ apol=[]
|
|
24 |
def plex(prompt):
|
25 |
gc.collect()
|
26 |
apol=[]
|
27 |
-
imags = pipe(prompt=prompt,negative_prompt="bad quality",num_inference_steps=5,width=512,height=512,generator=generator)
|
28 |
-
|
|
|
29 |
return apol
|
30 |
|
31 |
-
iface = gr.Interface(fn=plex,inputs=gr.Textbox(), outputs=gr.Gallery(columns=2), title="
|
32 |
iface.queue(max_size=1)
|
33 |
iface.launch(max_threads=1)
|
|
|
1 |
from PIL import Image
|
2 |
import gradio as gr
|
3 |
+
import random, os, gc
|
|
|
|
|
4 |
import torch
|
5 |
from accelerate import Accelerator
|
6 |
+
from transformers import pipeline
|
7 |
from diffusers.utils import load_image
|
8 |
+
from diffusers import EulerDiscreteScheduler, DiffusionPipeline
|
|
|
9 |
|
10 |
accelerator = Accelerator(cpu=True)
|
11 |
pipe = accelerator.prepare(DiffusionPipeline.from_pretrained("stabilityai/sd-turbo", torch_dtype=torch.float32, use_safetensors=True, safety_checker=None))
|
12 |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
|
13 |
+
pipe.unet.to(memory_format=torch.channels_last)
|
|
|
|
|
|
|
14 |
pipe = accelerator.prepare(pipe.to("cpu"))
|
15 |
generator = torch.Generator("cpu").manual_seed(random.randint(1, 867346))
|
16 |
apol=[]
|
|
|
18 |
def plex(prompt):
|
19 |
gc.collect()
|
20 |
apol=[]
|
21 |
+
imags = pipe(prompt=[prompt]*2,negative_prompt=["bad quality"]*2,num_inference_steps=5,width=512,height=512,generator=generator)
|
22 |
+
for i, igs in enumerate(imas["images"]):
|
23 |
+
apol.append(igs)
|
24 |
return apol
|
25 |
|
26 |
+
iface = gr.Interface(fn=plex,inputs=gr.Textbox(), outputs=gr.Gallery(columns=2), title="Stabilityai SD-Turbo CPU", description="Running on CPU, very slow!")
|
27 |
iface.queue(max_size=1)
|
28 |
iface.launch(max_threads=1)
|