Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
|
2 |
+
import gradio as gr
|
3 |
+
from PIL import Image
|
4 |
+
import cv2
|
5 |
+
import os, random, gc
|
6 |
+
import numpy as np
|
7 |
+
from transformers import pipeline
|
8 |
+
import PIL.Image
|
9 |
+
from diffusers.utils import load_image, export_to_video
|
10 |
+
from accelerate import Accelerator
|
11 |
+
from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, EulerDiscreteScheduler
|
12 |
+
import torch
|
13 |
+
from moviepy.video.fx.all import crop
|
14 |
+
from diffusers.utils import export_to_gif
|
15 |
+
import mediapy
|
16 |
+
from image_tools.sizes import resize_and_crop
|
17 |
+
from moviepy.editor import *
|
18 |
+
from pathlib import Path
|
19 |
+
from typing import Optional, List
|
20 |
+
from tqdm import tqdm
|
21 |
+
import supervision as sv
|
22 |
+
|
23 |
+
|
24 |
+
accelerator = Accelerator(cpu=True)
|
25 |
+
pipe = accelerator.prepare(StableDiffusionControlNetImg2ImgPipeline.from_pretrained("stabilityai/sdxl-turbo", controlnet=controlnet, torch_dtype=torch.bfloat16, use_safetensors=False, variant="fp16", safety_checker=None))
|
26 |
+
pipe.unet.to(memory_format=torch.channels_last)
|
27 |
+
pipe.scheduler = accelerator.prepare(EulerDiscreteScheduler.from_config(pipe.scheduler.config))
|
28 |
+
pipe = pipe.to("cpu")
|
29 |
+
|
30 |
+
controlnet = accelerator.prepare(ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.bfloat16))
|
31 |
+
def plex(fpath, text, neg_prompt, one, two, three, four, five):
|
32 |
+
gc.collect()
|
33 |
+
prompt = text
|
34 |
+
video = './video.mp4'
|
35 |
+
orvid = './orvid.mp4'
|
36 |
+
canvid = './canvid.mp4'
|
37 |
+
frames = []
|
38 |
+
canframes = []
|
39 |
+
orframes = []
|
40 |
+
fin_frames = []
|
41 |
+
max_frames=0
|
42 |
+
cap = cv2.VideoCapture(fpath)
|
43 |
+
clip = VideoFileClip(fpath)
|
44 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
45 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
46 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
47 |
+
aspect = width / height
|
48 |
+
if aspect == 1 and height >= 512:
|
49 |
+
nwidth = 512
|
50 |
+
nheight = 512
|
51 |
+
prep = clip.resize(height=nheight)
|
52 |
+
left = 0
|
53 |
+
top = 0
|
54 |
+
right = 512
|
55 |
+
bottom = 512
|
56 |
+
if aspect > 1 and height >= 512:
|
57 |
+
nheight = 512
|
58 |
+
nwidth = int(nheight * aspect)
|
59 |
+
prep = clip.resize(height=nheight)
|
60 |
+
left = (nwidth - width) / 2
|
61 |
+
top = 0
|
62 |
+
right = (nwidth + width) / 2
|
63 |
+
bottom = nheight
|
64 |
+
if aspect < 1 and width >= 512:
|
65 |
+
nwidth = 512
|
66 |
+
nheight = int(nwidth / aspect)
|
67 |
+
prep = clip.resize(height=nheight)
|
68 |
+
left = 0
|
69 |
+
top = (height - nheight) / 2
|
70 |
+
right = nwidth
|
71 |
+
bottom = (height + nheight) / 2
|
72 |
+
if aspect < 1 and width < 512:
|
73 |
+
return None
|
74 |
+
if aspect > 1 and height < 512:
|
75 |
+
return None
|
76 |
+
closer = crop(clip, x1=left, y1=top, x2=right, y2=bottom)
|
77 |
+
if fps > 33:
|
78 |
+
closer.write_videofile('./video.mp4', fps=33)
|
79 |
+
fps = 33
|
80 |
+
else:
|
81 |
+
closer.write_videofile('./video.mp4', fps=fps)
|
82 |
+
fps = fps
|
83 |
+
max_frames = int(fps * 4)
|
84 |
+
for frame in tqdm(sv.get_video_frames_generator(source_path=video,)):
|
85 |
+
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
86 |
+
cap.release()
|
87 |
+
cv2.destroyAllWindows()
|
88 |
+
ncap = cv2.VideoCapture(video)
|
89 |
+
total_frames = int(ncap.get(cv2.CAP_PROP_FRAME_COUNT))
|
90 |
+
if total_frames <= 0:
|
91 |
+
return None
|
92 |
+
b = 0
|
93 |
+
if total_frames > max_frames:
|
94 |
+
max_frames = int(max_frames)
|
95 |
+
if total_frames < max_frames:
|
96 |
+
max_frames = int(total_frames)
|
97 |
+
for b in range(int(max_frames)):
|
98 |
+
frame = frames[b]
|
99 |
+
original = load_image(Image.fromarray(frame))
|
100 |
+
original.save('./image.png', 'PNG')
|
101 |
+
original = original.resize((512, 512))
|
102 |
+
original = original.convert("RGB")
|
103 |
+
original.save('./image.png', 'PNG')
|
104 |
+
orframes.append(original)
|
105 |
+
cannyimage = np.array(original)
|
106 |
+
cannyimage = cv2.Canny(cannyimage, 100, 200)
|
107 |
+
cannyimage = cannyimage[:, :, None]
|
108 |
+
cannyimage = np.concatenate([cannyimage, cannyimage, cannyimage], axis=2)
|
109 |
+
cannyimage = Image.fromarray(cannyimage)
|
110 |
+
canframes.append(cannyimage)
|
111 |
+
generator = torch.Generator(device="cpu").manual_seed(five)
|
112 |
+
imoge = pipe(prompt=prompt,image=[original],control_image=[cannyimage],guidance_scale=four,num_inference_steps=one,generator=generator,strength=two,negative_prompt=neg_prompt,controlnet_conditioning_scale=three,width=512,height=512)
|
113 |
+
fin_frames.append(imoge.images[0])
|
114 |
+
b += 1
|
115 |
+
ncap.release()
|
116 |
+
cv2.destroyAllWindows()
|
117 |
+
export_to_video(fin_frames, video, fps=fps)
|
118 |
+
export_to_video(orframes, orvid, fps=fps)
|
119 |
+
export_to_video(canframes, canvid, fps=fps)
|
120 |
+
return video, canvid, orvid
|
121 |
+
|
122 |
+
iface = gr.Interface(fn=plex, inputs=[gr.File(label="Your video",interactive=True),gr.Textbox(label="prompt"),gr.Textbox(label="neg prompt"), gr.Slider(label="num inference steps", minimum=1, step=1, maximum=5, value=2), gr.Slider(label="prompt strength", minimum=0.01, step=0.01, maximum=19.99, value=5.00), gr.Slider(label="controlnet scale", minimum=0.01, step=0.01, maximum=0.99, value=0.80), gr.Slider(label="Guidance scale", minimum=0.01, step=0.01, maximum=9.99, value=2.00), gr.Slider(label="Manual seed", minimum=0, step=32, maximum=4836928, value=0)], outputs=[gr.Video(label="final"), gr.Video(label="canny vid"), gr.Video(label="orig")],description="Running on cpu, very slow! by JoPmt.")
|
123 |
+
iface.queue(max_size=1,api_open=False)
|
124 |
+
iface.launch(max_threads=1)
|