File size: 2,027 Bytes
21ba4fb
 
 
 
 
a77dc20
1de1c4f
a77dc20
21ba4fb
1de1c4f
 
21ba4fb
ca1c07d
21ba4fb
087ce88
9eddb40
087ce88
 
 
9eddb40
 
 
 
 
ca1c07d
9eddb40
 
1de1c4f
 
 
 
 
 
 
 
 
9f46175
a77dc20
 
 
 
 
087ce88
 
 
 
 
9eddb40
 
087ce88
1de1c4f
 
 
 
 
 
 
ca1c07d
 
a77dc20
 
1de1c4f
9eddb40
 
 
 
 
 
a77dc20
9eddb40
a77dc20
 
 
 
 
9eddb40
 
 
1de1c4f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
title: Code Review Assistant
emoji: 🤖
colorFrom: blue
colorTo: green
sdk: gradio
sdk_version: 4.0.0
app_file: app.py
pinned: false
hf_oauth: false
hardware: a10g-small
---

# Code Review Assistant

An automated code review system powered by Gemma-2b that provides intelligent code analysis, suggestions for improvements, and tracks review metrics.

## Features

### Automated Code Review
- Analyzes code quality and suggests improvements
- Identifies potential bugs and security issues
- Recommends best practices and optimizations
- Supports multiple programming languages (Python, JavaScript, Java, C++, TypeScript, Go, Rust)

### LLMOps Integration
- Uses Gemma-2b for intelligent code analysis
- Tracks model performance and accuracy
- Monitors response times and token usage
- Optimized with ZeroGPU for efficient inference

### Performance Monitoring
- Real-time metrics dashboard
- Review history tracking
- Response time monitoring
- Usage statistics

### User Interface
- Simple and intuitive Gradio interface
- Code input with syntax highlighting
- Language selection dropdown
- Example code snippets included

## Environment Variables

The following environment variables need to be set in your Hugging Face Space:

- `HUGGING_FACE_TOKEN`: Your Hugging Face API token (required)
- `MODEL_NAME`: google/gemma-2b-it (default)

## Hardware Configuration

This Space uses:
- Runtime: ZeroGPU
- Hardware: A10G Small
- Memory: Optimized for efficient model inference

## Usage

1. Enter your code in the text box
2. Select the programming language from the dropdown
3. Click "Submit for Review"
4. View the detailed analysis including:
   - Critical issues
   - Suggested improvements
   - Best practices
   - Security considerations

## Model Details

This application uses the Gemma-2b-it model from Google, which is:
- Optimized for instruction following
- Capable of detailed code analysis
- Efficient for deployment
- Suitable for code review tasks

## License

This project is licensed under the MIT License.