Spaces:
Sleeping
Sleeping
File size: 8,398 Bytes
a77dc20 98edac6 a77dc20 98edac6 a77dc20 98edac6 a77dc20 98edac6 a77dc20 98edac6 a77dc20 98edac6 a77dc20 98edac6 a77dc20 98edac6 a77dc20 98edac6 a77dc20 98edac6 a77dc20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from huggingface_hub import login
import os
import logging
from datetime import datetime
import json
from typing import List, Dict
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Environment variables
HF_TOKEN = os.getenv("HUGGING_FACE_TOKEN")
MODEL_NAME = os.getenv("MODEL_NAME", "google/gemma-2b-it")
class Review:
def __init__(self, code: str, language: str, suggestions: str):
self.code = code
self.language = language
self.suggestions = suggestions
self.timestamp = datetime.now().isoformat()
self.response_time = 0.0
class CodeReviewer:
def __init__(self):
self.model = None
self.tokenizer = None
self.device = "cpu"
self.review_history: List[Review] = []
self.metrics = {
'total_reviews': 0,
'avg_response_time': 0.0,
'reviews_today': 0
}
self.initialize_model()
def initialize_model(self):
"""Initialize the model and tokenizer."""
try:
if HF_TOKEN:
login(token=HF_TOKEN)
logger.info("Loading tokenizer...")
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
logger.info("Loading model...")
self.model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
device_map={"": self.device},
torch_dtype=torch.float32,
low_cpu_mem_usage=True
)
logger.info("Model loaded successfully")
except Exception as e:
logger.error(f"Error initializing model: {e}")
raise
def create_review_prompt(self, code: str, language: str) -> str:
"""Create a structured prompt for code review."""
return f"""Review this {language} code. List specific points in these sections:
Issues:
Improvements:
Best Practices:
Security:
Code:
```{language}
{code}
```"""
def review_code(self, code: str, language: str) -> str:
"""Perform code review using the model."""
try:
start_time = datetime.now()
prompt = self.create_review_prompt(code, language)
inputs = self.tokenizer(
prompt,
return_tensors="pt",
truncation=True,
max_length=512,
padding=True
)
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.95,
num_beams=1,
early_stopping=True
)
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
suggestions = response[len(prompt):].strip()
# Create review and update metrics
end_time = datetime.now()
review = Review(code, language, suggestions)
review.response_time = (end_time - start_time).total_seconds()
self.review_history.append(review)
# Update metrics
self.update_metrics(review)
return suggestions
except Exception as e:
logger.error(f"Error during code review: {e}")
return f"Error performing code review: {str(e)}"
def update_metrics(self, review: Review):
"""Update metrics with new review."""
self.metrics['total_reviews'] += 1
# Update average response time
total_time = self.metrics['avg_response_time'] * (self.metrics['total_reviews'] - 1)
total_time += review.response_time
self.metrics['avg_response_time'] = total_time / self.metrics['total_reviews']
# Update reviews today
today = datetime.now().date()
self.metrics['reviews_today'] = sum(
1 for r in self.review_history
if datetime.fromisoformat(r.timestamp).date() == today
)
def get_history(self) -> List[Dict]:
"""Get formatted review history."""
return [
{
'timestamp': r.timestamp,
'language': r.language,
'code': r.code,
'suggestions': r.suggestions,
'response_time': f"{r.response_time:.2f}s"
}
for r in reversed(self.review_history[-10:]) # Last 10 reviews
]
def get_metrics(self) -> Dict:
"""Get current metrics."""
return {
'Total Reviews': self.metrics['total_reviews'],
'Average Response Time': f"{self.metrics['avg_response_time']:.2f}s",
'Reviews Today': self.metrics['reviews_today']
}
# Initialize the reviewer
reviewer = CodeReviewer()
def review_code_interface(code: str, language: str) -> str:
"""Gradio interface function for code review."""
if not code.strip():
return "Please enter some code to review."
try:
result = reviewer.review_code(code, language)
return result
except Exception as e:
return f"Error: {str(e)}"
def get_history_interface() -> str:
"""Format history for display."""
history = reviewer.get_history()
if not history:
return "No reviews yet."
result = ""
for review in history:
result += f"Time: {review['timestamp']}\n"
result += f"Language: {review['language']}\n"
result += f"Response Time: {review['response_time']}\n"
result += "Code:\n```\n" + review['code'] + "\n```\n"
result += "Suggestions:\n" + review['suggestions'] + "\n"
result += "-" * 80 + "\n\n"
return result
def get_metrics_interface() -> Dict:
"""Get metrics for display."""
return reviewer.get_metrics()
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as iface:
gr.Markdown("# Code Review Assistant")
gr.Markdown("An automated code review system powered by Gemma-2b")
with gr.Tabs():
with gr.Tab("Review Code"):
with gr.Row():
with gr.Column():
code_input = gr.Textbox(
lines=10,
placeholder="Enter your code here...",
label="Code"
)
language_input = gr.Dropdown(
choices=["python", "javascript", "java", "cpp", "typescript", "go", "rust"],
value="python",
label="Language"
)
submit_btn = gr.Button("Submit for Review")
with gr.Column():
output = gr.Textbox(
label="Review Results",
lines=10
)
with gr.Tab("History"):
refresh_history = gr.Button("Refresh History")
history_output = gr.Textbox(
label="Review History",
lines=20,
value=get_history_interface()
)
with gr.Tab("Metrics"):
refresh_metrics = gr.Button("Refresh Metrics")
metrics_output = gr.JSON(
label="Performance Metrics",
value=get_metrics_interface()
)
# Set up event handlers
submit_btn.click(
review_code_interface,
inputs=[code_input, language_input],
outputs=output
)
refresh_history.click(
get_history_interface,
outputs=history_output
)
refresh_metrics.click(
get_metrics_interface,
outputs=metrics_output
)
# Add example inputs
gr.Examples(
examples=[
["""def add_numbers(a, b):
return a + b""", "python"],
["""function calculateSum(numbers) {
let sum = 0;
for(let i = 0; i < numbers.length; i++) {
sum += numbers[i];
}
return sum;
}""", "javascript"]
],
inputs=[code_input, language_input]
)
# Launch the app
if __name__ == "__main__":
iface.launch()
|