Joash
Convert to Gradio app for simpler deployment
a77dc20
raw
history blame
4.11 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from huggingface_hub import login
import os
import logging
from datetime import datetime
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Environment variables
HF_TOKEN = os.getenv("HUGGING_FACE_TOKEN")
MODEL_NAME = os.getenv("MODEL_NAME", "google/gemma-2b-it")
class CodeReviewer:
def __init__(self):
self.model = None
self.tokenizer = None
self.device = "cpu"
self.initialize_model()
def initialize_model(self):
"""Initialize the model and tokenizer."""
try:
if HF_TOKEN:
login(token=HF_TOKEN)
logger.info("Loading tokenizer...")
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
logger.info("Loading model...")
self.model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
device_map={"": self.device},
torch_dtype=torch.float32,
low_cpu_mem_usage=True
)
logger.info("Model loaded successfully")
except Exception as e:
logger.error(f"Error initializing model: {e}")
raise
def create_review_prompt(self, code: str, language: str) -> str:
"""Create a structured prompt for code review."""
return f"""Review this {language} code. List specific points in these sections:
Issues:
Improvements:
Best Practices:
Security:
Code:
```{language}
{code}
```"""
def review_code(self, code: str, language: str) -> str:
"""Perform code review using the model."""
try:
prompt = self.create_review_prompt(code, language)
inputs = self.tokenizer(
prompt,
return_tensors="pt",
truncation=True,
max_length=512,
padding=True
)
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.95,
num_beams=1,
early_stopping=True
)
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
return response[len(prompt):].strip()
except Exception as e:
logger.error(f"Error during code review: {e}")
return f"Error performing code review: {str(e)}"
# Initialize the reviewer
reviewer = CodeReviewer()
def review_code_interface(code: str, language: str) -> str:
"""Gradio interface function for code review."""
if not code.strip():
return "Please enter some code to review."
try:
result = reviewer.review_code(code, language)
return result
except Exception as e:
return f"Error: {str(e)}"
# Create Gradio interface
iface = gr.Interface(
fn=review_code_interface,
inputs=[
gr.Textbox(
lines=10,
placeholder="Enter your code here...",
label="Code"
),
gr.Dropdown(
choices=["python", "javascript", "java", "cpp", "typescript", "go", "rust"],
value="python",
label="Language"
)
],
outputs=gr.Textbox(
label="Review Results",
lines=10
),
title="Code Review Assistant",
description="An automated code review system powered by Gemma-2b that provides intelligent code analysis and suggestions for improvements.",
examples=[
["""def add_numbers(a, b):
return a + b""", "python"],
["""function calculateSum(numbers) {
let sum = 0;
for(let i = 0; i < numbers.length; i++) {
sum += numbers[i];
}
return sum;
}""", "javascript"]
],
theme=gr.themes.Soft()
)
# Launch the app
if __name__ == "__main__":
iface.launch()