Joash
Simplify implementation and remove Space SDK dependencies
764b8c8
raw
history blame
11.6 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from huggingface_hub import login
import os
import logging
from datetime import datetime
import json
from typing import List, Dict
import warnings
# Filter out CUDA/NVML warnings
warnings.filterwarnings('ignore', category=UserWarning)
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Environment variables
HF_TOKEN = os.getenv("HUGGING_FACE_TOKEN")
MODEL_NAME = os.getenv("MODEL_NAME", "google/gemma-2b-it")
# Cache directory for model
CACHE_DIR = "/home/user/.cache/huggingface"
os.makedirs(CACHE_DIR, exist_ok=True)
# Set environment variables for GPU
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512"
class Review:
def __init__(self, code: str, language: str, suggestions: str):
self.code = code
self.language = language
self.suggestions = suggestions
self.timestamp = datetime.now().isoformat()
self.response_time = 0.0
class CodeReviewer:
def __init__(self):
self.model = None
self.tokenizer = None
self.device = None
self.review_history: List[Review] = []
self.metrics = {
'total_reviews': 0,
'avg_response_time': 0.0,
'reviews_today': 0
}
self.initialize_model()
def initialize_model(self):
"""Initialize the model and tokenizer."""
try:
if HF_TOKEN:
login(token=HF_TOKEN, add_to_git_credential=False)
logger.info("Loading tokenizer...")
self.tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
token=HF_TOKEN,
trust_remote_code=True,
cache_dir=CACHE_DIR
)
logger.info("Loading model...")
# Initialize model with specific configuration
model_kwargs = {
"torch_dtype": torch.float16,
"trust_remote_code": True,
"low_cpu_mem_usage": True,
"cache_dir": CACHE_DIR,
"token": HF_TOKEN
}
# Try loading with different configurations
try:
# First try with device_map="auto"
self.model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
device_map="auto",
**model_kwargs
)
self.device = next(self.model.parameters()).device
except Exception as e1:
logger.warning(f"Failed to load with device_map='auto': {e1}")
try:
# Try with specific device
if torch.cuda.is_available():
self.device = torch.device("cuda:0")
else:
self.device = torch.device("cpu")
model_kwargs["device_map"] = None
self.model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
**model_kwargs
).to(self.device)
except Exception as e2:
logger.error(f"Failed to load model on specific device: {e2}")
raise
logger.info(f"Model loaded successfully on {self.device}")
except Exception as e:
logger.error(f"Error initializing model: {e}")
raise
def create_review_prompt(self, code: str, language: str) -> str:
"""Create a structured prompt for code review."""
return f"""Review this {language} code. List specific points in these sections:
Issues:
Improvements:
Best Practices:
Security:
Code:
```{language}
{code}
```"""
def review_code(self, code: str, language: str) -> str:
"""Perform code review using the model."""
try:
start_time = datetime.now()
prompt = self.create_review_prompt(code, language)
# Tokenize with error handling
try:
inputs = self.tokenizer(
prompt,
return_tensors="pt",
truncation=True,
max_length=512,
padding=True
).to(self.device)
except Exception as token_error:
logger.error(f"Tokenization error: {token_error}")
return "Error: Failed to process input code. Please try again."
# Generate with error handling
try:
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.95,
num_beams=1,
early_stopping=True
)
except Exception as gen_error:
logger.error(f"Generation error: {gen_error}")
return "Error: Failed to generate review. Please try again."
# Decode with error handling
try:
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
suggestions = response[len(prompt):].strip()
except Exception as decode_error:
logger.error(f"Decoding error: {decode_error}")
return "Error: Failed to decode model output. Please try again."
# Create review and update metrics
end_time = datetime.now()
review = Review(code, language, suggestions)
review.response_time = (end_time - start_time).total_seconds()
self.review_history.append(review)
# Update metrics
self.update_metrics(review)
# Clear GPU memory
if torch.cuda.is_available():
del inputs, outputs
torch.cuda.empty_cache()
return suggestions
except Exception as e:
logger.error(f"Error during code review: {e}")
return f"Error performing code review: {str(e)}"
def update_metrics(self, review: Review):
"""Update metrics with new review."""
self.metrics['total_reviews'] += 1
# Update average response time
total_time = self.metrics['avg_response_time'] * (self.metrics['total_reviews'] - 1)
total_time += review.response_time
self.metrics['avg_response_time'] = total_time / self.metrics['total_reviews']
# Update reviews today
today = datetime.now().date()
self.metrics['reviews_today'] = sum(
1 for r in self.review_history
if datetime.fromisoformat(r.timestamp).date() == today
)
def get_history(self) -> List[Dict]:
"""Get formatted review history."""
return [
{
'timestamp': r.timestamp,
'language': r.language,
'code': r.code,
'suggestions': r.suggestions,
'response_time': f"{r.response_time:.2f}s"
}
for r in reversed(self.review_history[-10:]) # Last 10 reviews
]
def get_metrics(self) -> Dict:
"""Get current metrics."""
return {
'Total Reviews': self.metrics['total_reviews'],
'Average Response Time': f"{self.metrics['avg_response_time']:.2f}s",
'Reviews Today': self.metrics['reviews_today'],
'Device': str(self.device)
}
# Initialize reviewer
reviewer = CodeReviewer()
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as iface:
gr.Markdown("# Code Review Assistant")
gr.Markdown("An automated code review system powered by Gemma-2b")
with gr.Tabs():
with gr.Tab("Review Code"):
with gr.Row():
with gr.Column():
code_input = gr.Textbox(
lines=10,
placeholder="Enter your code here...",
label="Code"
)
language_input = gr.Dropdown(
choices=["python", "javascript", "java", "cpp", "typescript", "go", "rust"],
value="python",
label="Language"
)
submit_btn = gr.Button("Submit for Review")
with gr.Column():
output = gr.Textbox(
label="Review Results",
lines=10
)
with gr.Tab("History"):
refresh_history = gr.Button("Refresh History")
history_output = gr.Textbox(
label="Review History",
lines=20
)
with gr.Tab("Metrics"):
refresh_metrics = gr.Button("Refresh Metrics")
metrics_output = gr.JSON(
label="Performance Metrics"
)
# Set up event handlers
def review_code_interface(code: str, language: str) -> str:
if not code.strip():
return "Please enter some code to review."
try:
return reviewer.review_code(code, language)
except Exception as e:
logger.error(f"Interface error: {e}")
return f"Error: {str(e)}"
def get_history_interface() -> str:
try:
history = reviewer.get_history()
if not history:
return "No reviews yet."
result = ""
for review in history:
result += f"Time: {review['timestamp']}\n"
result += f"Language: {review['language']}\n"
result += f"Response Time: {review['response_time']}\n"
result += "Code:\n```\n" + review['code'] + "\n```\n"
result += "Suggestions:\n" + review['suggestions'] + "\n"
result += "-" * 80 + "\n\n"
return result
except Exception as e:
logger.error(f"History error: {e}")
return "Error retrieving history"
def get_metrics_interface() -> Dict:
try:
return reviewer.get_metrics()
except Exception as e:
logger.error(f"Metrics error: {e}")
return {"error": str(e)}
submit_btn.click(
review_code_interface,
inputs=[code_input, language_input],
outputs=output
)
refresh_history.click(
get_history_interface,
outputs=history_output
)
refresh_metrics.click(
get_metrics_interface,
outputs=metrics_output
)
# Add example inputs
gr.Examples(
examples=[
["""def add_numbers(a, b):
return a + b""", "python"],
["""function calculateSum(numbers) {
let sum = 0;
for(let i = 0; i < numbers.length; i++) {
sum += numbers[i];
}
return sum;
}""", "javascript"]
],
inputs=[code_input, language_input]
)
# Launch the app
if __name__ == "__main__":
iface.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
quiet=False
)