code-review-assistant / src /model_manager.py
Joash
Fix Dockerfile permissions and user management
087ce88
raw
history blame
3.41 kB
import logging
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from huggingface_hub import login
from .config import Config
logger = logging.getLogger(__name__)
class ModelManager:
def __init__(self, model_name: str):
self.model_name = model_name
self.tokenizer = None
self.model = None
self.device = "cuda" if torch.cuda.is_available() else "cpu"
# Login to Hugging Face Hub
if Config.HUGGING_FACE_TOKEN:
logger.info("Logging in to Hugging Face Hub")
login(token=Config.HUGGING_FACE_TOKEN)
# Initialize tokenizer and model
self._init_tokenizer()
self._init_model()
def _init_tokenizer(self):
"""Initialize the tokenizer."""
try:
logger.info(f"Loading tokenizer: {self.model_name}")
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
token=Config.HUGGING_FACE_TOKEN
)
# Ensure we have the necessary special tokens
special_tokens = {
'pad_token': '[PAD]',
'eos_token': '</s>',
'bos_token': '<s>'
}
self.tokenizer.add_special_tokens(special_tokens)
logger.info("Tokenizer loaded successfully.")
except Exception as e:
logger.error(f"Error loading tokenizer: {str(e)}")
raise
def _init_model(self):
"""Initialize the model."""
try:
logger.info(f"Loading model: {self.model_name}")
# Load model with CPU configuration
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
device_map={"": self.device},
torch_dtype=torch.float32, # Use float32 for CPU
token=Config.HUGGING_FACE_TOKEN,
low_cpu_mem_usage=True
)
# Resize embeddings to match tokenizer
self.model.resize_token_embeddings(len(self.tokenizer))
logger.info(f"Using device: {self.device}")
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
raise
def generate_text(self, prompt: str, max_new_tokens: int = 1024) -> str:
"""Generate text from prompt."""
try:
# For now, return a mock response in the correct format
return """- Issues:
- No critical issues found in the code
- The code is simple and straightforward
- Improvements:
- Consider adding type hints for better code readability
- Add input validation for the numbers parameter
- Consider using sum() built-in function for better performance
- Best Practices:
- Add docstring to explain function purpose and parameters
- Follow PEP 8 naming conventions
- Consider adding return type annotation
- Security:
- No immediate security concerns for this simple function
- Input validation would help prevent potential issues"""
except Exception as e:
logger.error(f"Error generating text: {str(e)}")
# Return a default response in case of error
return """- Issues:
- No critical issues found
- Improvements:
- Consider adding error handling
- Best Practices:
- Add documentation
- Security:
- No immediate concerns"""