code-review-assistant / src /model_manager.py
Joash
Fix model_manager to use actual model inference instead of mock response
93aa8dc
raw
history blame
3.75 kB
import logging
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from huggingface_hub import login
from .config import Config
logger = logging.getLogger(__name__)
class ModelManager:
def __init__(self, model_name: str):
self.model_name = model_name
self.tokenizer = None
self.model = None
self.device = "cuda" if torch.cuda.is_available() else "cpu"
# Login to Hugging Face Hub
if Config.HUGGING_FACE_TOKEN:
logger.info("Logging in to Hugging Face Hub")
login(token=Config.HUGGING_FACE_TOKEN)
# Initialize tokenizer and model
self._init_tokenizer()
self._init_model()
def _init_tokenizer(self):
"""Initialize the tokenizer."""
try:
logger.info(f"Loading tokenizer: {self.model_name}")
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
token=Config.HUGGING_FACE_TOKEN
)
# Ensure we have the necessary special tokens
special_tokens = {
'pad_token': '[PAD]',
'eos_token': '</s>',
'bos_token': '<s>'
}
self.tokenizer.add_special_tokens(special_tokens)
logger.info("Tokenizer loaded successfully.")
except Exception as e:
logger.error(f"Error loading tokenizer: {str(e)}")
raise
def _init_model(self):
"""Initialize the model."""
try:
logger.info(f"Loading model: {self.model_name}")
# Load model with CPU configuration
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
device_map={"": self.device},
torch_dtype=torch.float32, # Use float32 for CPU
token=Config.HUGGING_FACE_TOKEN,
low_cpu_mem_usage=True
)
# Resize embeddings to match tokenizer
self.model.resize_token_embeddings(len(self.tokenizer))
logger.info(f"Using device: {self.device}")
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
raise
def generate_text(self, prompt: str, max_new_tokens: int = 1024) -> str:
"""Generate text from prompt."""
try:
# Encode the prompt
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=2048)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
# Generate response
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=Config.TEMPERATURE,
top_p=Config.TOP_P,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id,
)
# Decode and return the generated text
generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the generated part (remove the prompt)
response = generated_text[len(prompt):].strip()
return response
except Exception as e:
logger.error(f"Error generating text: {str(e)}")
return """- Issues:
- Error generating code review
- Model inference failed
- Improvements:
- Please try again
- Check model configuration
- Best Practices:
- Ensure proper model setup
- Verify token permissions
- Security:
- No immediate concerns"""