Spaces:
Sleeping
Sleeping
Joash
commited on
Commit
·
1f37a6a
1
Parent(s):
93aa8dc
Add detailed logging and improve error handling in model manager
Browse files- Dockerfile +4 -2
- src/model_manager.py +22 -20
Dockerfile
CHANGED
|
@@ -26,6 +26,8 @@ ENV PORT=7860
|
|
| 26 |
ENV PATH="/home/user/.local/bin:${PATH}"
|
| 27 |
ENV HF_HOME=/home/user/.cache/huggingface
|
| 28 |
ENV TRANSFORMERS_CACHE=/home/user/.cache/huggingface
|
|
|
|
|
|
|
| 29 |
|
| 30 |
# Switch to non-root user
|
| 31 |
USER user
|
|
@@ -46,5 +48,5 @@ COPY --chown=user:user . .
|
|
| 46 |
# Expose port for Hugging Face Spaces
|
| 47 |
EXPOSE 7860
|
| 48 |
|
| 49 |
-
# Run the application
|
| 50 |
-
CMD ["python", "-m", "uvicorn", "src.api:app", "--host", "0.0.0.0", "--port", "7860"]
|
|
|
|
| 26 |
ENV PATH="/home/user/.local/bin:${PATH}"
|
| 27 |
ENV HF_HOME=/home/user/.cache/huggingface
|
| 28 |
ENV TRANSFORMERS_CACHE=/home/user/.cache/huggingface
|
| 29 |
+
# Set logging to stdout
|
| 30 |
+
ENV LOG_FILE=/dev/stdout
|
| 31 |
|
| 32 |
# Switch to non-root user
|
| 33 |
USER user
|
|
|
|
| 48 |
# Expose port for Hugging Face Spaces
|
| 49 |
EXPOSE 7860
|
| 50 |
|
| 51 |
+
# Run the application with logging
|
| 52 |
+
CMD ["python", "-u", "-m", "uvicorn", "src.api:app", "--host", "0.0.0.0", "--port", "7860", "--log-level", "debug"]
|
src/model_manager.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
import logging
|
| 2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
import torch
|
| 4 |
from huggingface_hub import login
|
| 5 |
from .config import Config
|
|
@@ -16,7 +16,12 @@ class ModelManager:
|
|
| 16 |
# Login to Hugging Face Hub
|
| 17 |
if Config.HUGGING_FACE_TOKEN:
|
| 18 |
logger.info("Logging in to Hugging Face Hub")
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
# Initialize tokenizer and model
|
| 22 |
self._init_tokenizer()
|
|
@@ -37,7 +42,8 @@ class ModelManager:
|
|
| 37 |
'bos_token': '<s>'
|
| 38 |
}
|
| 39 |
self.tokenizer.add_special_tokens(special_tokens)
|
| 40 |
-
logger.info("Tokenizer loaded successfully
|
|
|
|
| 41 |
except Exception as e:
|
| 42 |
logger.error(f"Error loading tokenizer: {str(e)}")
|
| 43 |
raise
|
|
@@ -46,6 +52,7 @@ class ModelManager:
|
|
| 46 |
"""Initialize the model."""
|
| 47 |
try:
|
| 48 |
logger.info(f"Loading model: {self.model_name}")
|
|
|
|
| 49 |
|
| 50 |
# Load model with CPU configuration
|
| 51 |
self.model = AutoModelForCausalLM.from_pretrained(
|
|
@@ -57,7 +64,8 @@ class ModelManager:
|
|
| 57 |
)
|
| 58 |
# Resize embeddings to match tokenizer
|
| 59 |
self.model.resize_token_embeddings(len(self.tokenizer))
|
| 60 |
-
logger.info(
|
|
|
|
| 61 |
except Exception as e:
|
| 62 |
logger.error(f"Error loading model: {str(e)}")
|
| 63 |
raise
|
|
@@ -65,11 +73,16 @@ class ModelManager:
|
|
| 65 |
def generate_text(self, prompt: str, max_new_tokens: int = 1024) -> str:
|
| 66 |
"""Generate text from prompt."""
|
| 67 |
try:
|
|
|
|
|
|
|
|
|
|
| 68 |
# Encode the prompt
|
| 69 |
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=2048)
|
| 70 |
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
|
|
|
| 71 |
|
| 72 |
# Generate response
|
|
|
|
| 73 |
with torch.no_grad():
|
| 74 |
outputs = self.model.generate(
|
| 75 |
**inputs,
|
|
@@ -80,27 +93,16 @@ class ModelManager:
|
|
| 80 |
pad_token_id=self.tokenizer.pad_token_id,
|
| 81 |
eos_token_id=self.tokenizer.eos_token_id,
|
| 82 |
)
|
| 83 |
-
|
| 84 |
# Decode and return the generated text
|
| 85 |
generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 86 |
-
# Extract only the generated part (remove the prompt)
|
| 87 |
response = generated_text[len(prompt):].strip()
|
| 88 |
|
|
|
|
|
|
|
| 89 |
return response
|
| 90 |
|
| 91 |
except Exception as e:
|
| 92 |
logger.error(f"Error generating text: {str(e)}")
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
- Model inference failed
|
| 96 |
-
|
| 97 |
-
- Improvements:
|
| 98 |
-
- Please try again
|
| 99 |
-
- Check model configuration
|
| 100 |
-
|
| 101 |
-
- Best Practices:
|
| 102 |
-
- Ensure proper model setup
|
| 103 |
-
- Verify token permissions
|
| 104 |
-
|
| 105 |
-
- Security:
|
| 106 |
-
- No immediate concerns"""
|
|
|
|
| 1 |
import logging
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
| 3 |
import torch
|
| 4 |
from huggingface_hub import login
|
| 5 |
from .config import Config
|
|
|
|
| 16 |
# Login to Hugging Face Hub
|
| 17 |
if Config.HUGGING_FACE_TOKEN:
|
| 18 |
logger.info("Logging in to Hugging Face Hub")
|
| 19 |
+
try:
|
| 20 |
+
login(token=Config.HUGGING_FACE_TOKEN)
|
| 21 |
+
logger.info("Successfully logged in to Hugging Face Hub")
|
| 22 |
+
except Exception as e:
|
| 23 |
+
logger.error(f"Failed to login to Hugging Face Hub: {str(e)}")
|
| 24 |
+
raise
|
| 25 |
|
| 26 |
# Initialize tokenizer and model
|
| 27 |
self._init_tokenizer()
|
|
|
|
| 42 |
'bos_token': '<s>'
|
| 43 |
}
|
| 44 |
self.tokenizer.add_special_tokens(special_tokens)
|
| 45 |
+
logger.info("Tokenizer loaded successfully")
|
| 46 |
+
logger.debug(f"Tokenizer vocabulary size: {len(self.tokenizer)}")
|
| 47 |
except Exception as e:
|
| 48 |
logger.error(f"Error loading tokenizer: {str(e)}")
|
| 49 |
raise
|
|
|
|
| 52 |
"""Initialize the model."""
|
| 53 |
try:
|
| 54 |
logger.info(f"Loading model: {self.model_name}")
|
| 55 |
+
logger.info(f"Using device: {self.device}")
|
| 56 |
|
| 57 |
# Load model with CPU configuration
|
| 58 |
self.model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
| 64 |
)
|
| 65 |
# Resize embeddings to match tokenizer
|
| 66 |
self.model.resize_token_embeddings(len(self.tokenizer))
|
| 67 |
+
logger.info("Model loaded successfully")
|
| 68 |
+
logger.debug(f"Model parameters: {sum(p.numel() for p in self.model.parameters())}")
|
| 69 |
except Exception as e:
|
| 70 |
logger.error(f"Error loading model: {str(e)}")
|
| 71 |
raise
|
|
|
|
| 73 |
def generate_text(self, prompt: str, max_new_tokens: int = 1024) -> str:
|
| 74 |
"""Generate text from prompt."""
|
| 75 |
try:
|
| 76 |
+
logger.info("Starting text generation")
|
| 77 |
+
logger.debug(f"Prompt length: {len(prompt)}")
|
| 78 |
+
|
| 79 |
# Encode the prompt
|
| 80 |
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=2048)
|
| 81 |
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 82 |
+
logger.debug(f"Input tensor shape: {inputs['input_ids'].shape}")
|
| 83 |
|
| 84 |
# Generate response
|
| 85 |
+
logger.info("Generating response")
|
| 86 |
with torch.no_grad():
|
| 87 |
outputs = self.model.generate(
|
| 88 |
**inputs,
|
|
|
|
| 93 |
pad_token_id=self.tokenizer.pad_token_id,
|
| 94 |
eos_token_id=self.tokenizer.eos_token_id,
|
| 95 |
)
|
| 96 |
+
|
| 97 |
# Decode and return the generated text
|
| 98 |
generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
| 99 |
response = generated_text[len(prompt):].strip()
|
| 100 |
|
| 101 |
+
logger.info("Text generation completed")
|
| 102 |
+
logger.debug(f"Response length: {len(response)}")
|
| 103 |
return response
|
| 104 |
|
| 105 |
except Exception as e:
|
| 106 |
logger.error(f"Error generating text: {str(e)}")
|
| 107 |
+
logger.error(f"Error details: {type(e).__name__}")
|
| 108 |
+
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|