Spaces:
Sleeping
Sleeping
Joash
commited on
Commit
·
80d4148
1
Parent(s):
38c113b
Update app to properly utilize ZeroGPU with GPU optimizations
Browse files
app.py
CHANGED
@@ -28,7 +28,8 @@ class CodeReviewer:
|
|
28 |
def __init__(self):
|
29 |
self.model = None
|
30 |
self.tokenizer = None
|
31 |
-
|
|
|
32 |
self.review_history: List[Review] = []
|
33 |
self.metrics = {
|
34 |
'total_reviews': 0,
|
@@ -41,19 +42,25 @@ class CodeReviewer:
|
|
41 |
"""Initialize the model and tokenizer."""
|
42 |
try:
|
43 |
if HF_TOKEN:
|
44 |
-
login(token=HF_TOKEN)
|
45 |
|
46 |
logger.info("Loading tokenizer...")
|
47 |
-
self.tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
|
|
|
|
48 |
|
49 |
logger.info("Loading model...")
|
|
|
50 |
self.model = AutoModelForCausalLM.from_pretrained(
|
51 |
MODEL_NAME,
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
55 |
)
|
56 |
-
logger.info("Model loaded successfully")
|
57 |
except Exception as e:
|
58 |
logger.error(f"Error initializing model: {e}")
|
59 |
raise
|
@@ -83,7 +90,7 @@ Code:
|
|
83 |
truncation=True,
|
84 |
max_length=512,
|
85 |
padding=True
|
86 |
-
)
|
87 |
|
88 |
with torch.no_grad():
|
89 |
outputs = self.model.generate(
|
@@ -108,6 +115,11 @@ Code:
|
|
108 |
# Update metrics
|
109 |
self.update_metrics(review)
|
110 |
|
|
|
|
|
|
|
|
|
|
|
111 |
return suggestions
|
112 |
|
113 |
except Exception as e:
|
@@ -148,43 +160,10 @@ Code:
|
|
148 |
return {
|
149 |
'Total Reviews': self.metrics['total_reviews'],
|
150 |
'Average Response Time': f"{self.metrics['avg_response_time']:.2f}s",
|
151 |
-
'Reviews Today': self.metrics['reviews_today']
|
|
|
152 |
}
|
153 |
|
154 |
-
# Initialize the reviewer
|
155 |
-
reviewer = CodeReviewer()
|
156 |
-
|
157 |
-
def review_code_interface(code: str, language: str) -> str:
|
158 |
-
"""Gradio interface function for code review."""
|
159 |
-
if not code.strip():
|
160 |
-
return "Please enter some code to review."
|
161 |
-
|
162 |
-
try:
|
163 |
-
result = reviewer.review_code(code, language)
|
164 |
-
return result
|
165 |
-
except Exception as e:
|
166 |
-
return f"Error: {str(e)}"
|
167 |
-
|
168 |
-
def get_history_interface() -> str:
|
169 |
-
"""Format history for display."""
|
170 |
-
history = reviewer.get_history()
|
171 |
-
if not history:
|
172 |
-
return "No reviews yet."
|
173 |
-
|
174 |
-
result = ""
|
175 |
-
for review in history:
|
176 |
-
result += f"Time: {review['timestamp']}\n"
|
177 |
-
result += f"Language: {review['language']}\n"
|
178 |
-
result += f"Response Time: {review['response_time']}\n"
|
179 |
-
result += "Code:\n```\n" + review['code'] + "\n```\n"
|
180 |
-
result += "Suggestions:\n" + review['suggestions'] + "\n"
|
181 |
-
result += "-" * 80 + "\n\n"
|
182 |
-
return result
|
183 |
-
|
184 |
-
def get_metrics_interface() -> Dict:
|
185 |
-
"""Get metrics for display."""
|
186 |
-
return reviewer.get_metrics()
|
187 |
-
|
188 |
# Create Gradio interface
|
189 |
with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
190 |
gr.Markdown("# Code Review Assistant")
|
@@ -215,18 +194,44 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
215 |
refresh_history = gr.Button("Refresh History")
|
216 |
history_output = gr.Textbox(
|
217 |
label="Review History",
|
218 |
-
lines=20
|
219 |
-
value=get_history_interface()
|
220 |
)
|
221 |
|
222 |
with gr.Tab("Metrics"):
|
223 |
refresh_metrics = gr.Button("Refresh Metrics")
|
224 |
metrics_output = gr.JSON(
|
225 |
-
label="Performance Metrics"
|
226 |
-
value=get_metrics_interface()
|
227 |
)
|
228 |
|
|
|
|
|
|
|
229 |
# Set up event handlers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
submit_btn.click(
|
231 |
review_code_interface,
|
232 |
inputs=[code_input, language_input],
|
|
|
28 |
def __init__(self):
|
29 |
self.model = None
|
30 |
self.tokenizer = None
|
31 |
+
# Let ZeroGPU handle GPU allocation
|
32 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
33 |
self.review_history: List[Review] = []
|
34 |
self.metrics = {
|
35 |
'total_reviews': 0,
|
|
|
42 |
"""Initialize the model and tokenizer."""
|
43 |
try:
|
44 |
if HF_TOKEN:
|
45 |
+
login(token=HF_TOKEN, add_to_git_credential=False)
|
46 |
|
47 |
logger.info("Loading tokenizer...")
|
48 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
49 |
+
MODEL_NAME,
|
50 |
+
token=HF_TOKEN,
|
51 |
+
trust_remote_code=True
|
52 |
+
)
|
53 |
|
54 |
logger.info("Loading model...")
|
55 |
+
# Let ZeroGPU handle device mapping
|
56 |
self.model = AutoModelForCausalLM.from_pretrained(
|
57 |
MODEL_NAME,
|
58 |
+
token=HF_TOKEN,
|
59 |
+
device_map="auto",
|
60 |
+
torch_dtype=torch.float16, # Use fp16 for GPU
|
61 |
+
trust_remote_code=True
|
62 |
)
|
63 |
+
logger.info(f"Model loaded successfully on {self.device}")
|
64 |
except Exception as e:
|
65 |
logger.error(f"Error initializing model: {e}")
|
66 |
raise
|
|
|
90 |
truncation=True,
|
91 |
max_length=512,
|
92 |
padding=True
|
93 |
+
).to(self.device) # Move inputs to GPU
|
94 |
|
95 |
with torch.no_grad():
|
96 |
outputs = self.model.generate(
|
|
|
115 |
# Update metrics
|
116 |
self.update_metrics(review)
|
117 |
|
118 |
+
# Clear GPU memory
|
119 |
+
if torch.cuda.is_available():
|
120 |
+
del inputs, outputs
|
121 |
+
torch.cuda.empty_cache()
|
122 |
+
|
123 |
return suggestions
|
124 |
|
125 |
except Exception as e:
|
|
|
160 |
return {
|
161 |
'Total Reviews': self.metrics['total_reviews'],
|
162 |
'Average Response Time': f"{self.metrics['avg_response_time']:.2f}s",
|
163 |
+
'Reviews Today': self.metrics['reviews_today'],
|
164 |
+
'Device': str(self.device)
|
165 |
}
|
166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
# Create Gradio interface
|
168 |
with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
169 |
gr.Markdown("# Code Review Assistant")
|
|
|
194 |
refresh_history = gr.Button("Refresh History")
|
195 |
history_output = gr.Textbox(
|
196 |
label="Review History",
|
197 |
+
lines=20
|
|
|
198 |
)
|
199 |
|
200 |
with gr.Tab("Metrics"):
|
201 |
refresh_metrics = gr.Button("Refresh Metrics")
|
202 |
metrics_output = gr.JSON(
|
203 |
+
label="Performance Metrics"
|
|
|
204 |
)
|
205 |
|
206 |
+
# Initialize reviewer
|
207 |
+
reviewer = CodeReviewer()
|
208 |
+
|
209 |
# Set up event handlers
|
210 |
+
def review_code_interface(code: str, language: str) -> str:
|
211 |
+
if not code.strip():
|
212 |
+
return "Please enter some code to review."
|
213 |
+
try:
|
214 |
+
return reviewer.review_code(code, language)
|
215 |
+
except Exception as e:
|
216 |
+
return f"Error: {str(e)}"
|
217 |
+
|
218 |
+
def get_history_interface() -> str:
|
219 |
+
history = reviewer.get_history()
|
220 |
+
if not history:
|
221 |
+
return "No reviews yet."
|
222 |
+
result = ""
|
223 |
+
for review in history:
|
224 |
+
result += f"Time: {review['timestamp']}\n"
|
225 |
+
result += f"Language: {review['language']}\n"
|
226 |
+
result += f"Response Time: {review['response_time']}\n"
|
227 |
+
result += "Code:\n```\n" + review['code'] + "\n```\n"
|
228 |
+
result += "Suggestions:\n" + review['suggestions'] + "\n"
|
229 |
+
result += "-" * 80 + "\n\n"
|
230 |
+
return result
|
231 |
+
|
232 |
+
def get_metrics_interface() -> Dict:
|
233 |
+
return reviewer.get_metrics()
|
234 |
+
|
235 |
submit_btn.click(
|
236 |
review_code_interface,
|
237 |
inputs=[code_input, language_input],
|