Spaces:
Sleeping
Sleeping
Joash
commited on
Commit
·
d8e1d06
1
Parent(s):
1de1c4f
Add robust error handling and improve model loading
Browse files
app.py
CHANGED
@@ -7,6 +7,10 @@ import logging
|
|
7 |
from datetime import datetime
|
8 |
import json
|
9 |
from typing import List, Dict
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Configure logging
|
12 |
logging.basicConfig(level=logging.INFO)
|
@@ -16,6 +20,10 @@ logger = logging.getLogger(__name__)
|
|
16 |
HF_TOKEN = os.getenv("HUGGING_FACE_TOKEN")
|
17 |
MODEL_NAME = os.getenv("MODEL_NAME", "google/gemma-2b-it")
|
18 |
|
|
|
|
|
|
|
|
|
19 |
class Review:
|
20 |
def __init__(self, code: str, language: str, suggestions: str):
|
21 |
self.code = code
|
@@ -47,18 +55,36 @@ class CodeReviewer:
|
|
47 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
48 |
MODEL_NAME,
|
49 |
token=HF_TOKEN,
|
50 |
-
trust_remote_code=True
|
|
|
51 |
)
|
52 |
|
53 |
logger.info("Loading model...")
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
logger.info(f"Model loaded successfully on {self.device}")
|
63 |
except Exception as e:
|
64 |
logger.error(f"Error initializing model: {e}")
|
@@ -83,27 +109,42 @@ Code:
|
|
83 |
start_time = datetime.now()
|
84 |
prompt = self.create_review_prompt(code, language)
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
-
with
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
# Create review and update metrics
|
109 |
end_time = datetime.now()
|
@@ -212,24 +253,33 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
212 |
try:
|
213 |
return reviewer.review_code(code, language)
|
214 |
except Exception as e:
|
|
|
215 |
return f"Error: {str(e)}"
|
216 |
|
217 |
def get_history_interface() -> str:
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
|
|
|
|
|
|
|
|
230 |
|
231 |
def get_metrics_interface() -> Dict:
|
232 |
-
|
|
|
|
|
|
|
|
|
233 |
|
234 |
submit_btn.click(
|
235 |
review_code_interface,
|
|
|
7 |
from datetime import datetime
|
8 |
import json
|
9 |
from typing import List, Dict
|
10 |
+
import warnings
|
11 |
+
|
12 |
+
# Filter CUDA warnings
|
13 |
+
warnings.filterwarnings('ignore', category=UserWarning, message='Can\'t initialize NVML')
|
14 |
|
15 |
# Configure logging
|
16 |
logging.basicConfig(level=logging.INFO)
|
|
|
20 |
HF_TOKEN = os.getenv("HUGGING_FACE_TOKEN")
|
21 |
MODEL_NAME = os.getenv("MODEL_NAME", "google/gemma-2b-it")
|
22 |
|
23 |
+
# Cache directory for model
|
24 |
+
CACHE_DIR = "/home/user/.cache/huggingface"
|
25 |
+
os.makedirs(CACHE_DIR, exist_ok=True)
|
26 |
+
|
27 |
class Review:
|
28 |
def __init__(self, code: str, language: str, suggestions: str):
|
29 |
self.code = code
|
|
|
55 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
56 |
MODEL_NAME,
|
57 |
token=HF_TOKEN,
|
58 |
+
trust_remote_code=True,
|
59 |
+
cache_dir=CACHE_DIR
|
60 |
)
|
61 |
|
62 |
logger.info("Loading model...")
|
63 |
+
# Initialize model with specific configuration
|
64 |
+
model_kwargs = {
|
65 |
+
"device_map": "auto",
|
66 |
+
"torch_dtype": torch.float16,
|
67 |
+
"trust_remote_code": True,
|
68 |
+
"low_cpu_mem_usage": True,
|
69 |
+
"cache_dir": CACHE_DIR,
|
70 |
+
"token": HF_TOKEN
|
71 |
+
}
|
72 |
+
|
73 |
+
# Load model with error handling
|
74 |
+
try:
|
75 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
76 |
+
MODEL_NAME,
|
77 |
+
**model_kwargs
|
78 |
+
)
|
79 |
+
except Exception as model_error:
|
80 |
+
logger.error(f"Error loading model: {model_error}")
|
81 |
+
# Try loading with safetensors
|
82 |
+
model_kwargs["use_safetensors"] = True
|
83 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
84 |
+
MODEL_NAME,
|
85 |
+
**model_kwargs
|
86 |
+
)
|
87 |
+
|
88 |
logger.info(f"Model loaded successfully on {self.device}")
|
89 |
except Exception as e:
|
90 |
logger.error(f"Error initializing model: {e}")
|
|
|
109 |
start_time = datetime.now()
|
110 |
prompt = self.create_review_prompt(code, language)
|
111 |
|
112 |
+
# Tokenize with error handling
|
113 |
+
try:
|
114 |
+
inputs = self.tokenizer(
|
115 |
+
prompt,
|
116 |
+
return_tensors="pt",
|
117 |
+
truncation=True,
|
118 |
+
max_length=512,
|
119 |
+
padding=True
|
120 |
+
).to(self.device)
|
121 |
+
except Exception as token_error:
|
122 |
+
logger.error(f"Tokenization error: {token_error}")
|
123 |
+
return "Error: Failed to process input code. Please try again."
|
124 |
|
125 |
+
# Generate with error handling
|
126 |
+
try:
|
127 |
+
with torch.no_grad():
|
128 |
+
outputs = self.model.generate(
|
129 |
+
**inputs,
|
130 |
+
max_new_tokens=512,
|
131 |
+
do_sample=True,
|
132 |
+
temperature=0.7,
|
133 |
+
top_p=0.95,
|
134 |
+
num_beams=1,
|
135 |
+
early_stopping=True
|
136 |
+
)
|
137 |
+
except Exception as gen_error:
|
138 |
+
logger.error(f"Generation error: {gen_error}")
|
139 |
+
return "Error: Failed to generate review. Please try again."
|
140 |
|
141 |
+
# Decode with error handling
|
142 |
+
try:
|
143 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
144 |
+
suggestions = response[len(prompt):].strip()
|
145 |
+
except Exception as decode_error:
|
146 |
+
logger.error(f"Decoding error: {decode_error}")
|
147 |
+
return "Error: Failed to decode model output. Please try again."
|
148 |
|
149 |
# Create review and update metrics
|
150 |
end_time = datetime.now()
|
|
|
253 |
try:
|
254 |
return reviewer.review_code(code, language)
|
255 |
except Exception as e:
|
256 |
+
logger.error(f"Interface error: {e}")
|
257 |
return f"Error: {str(e)}"
|
258 |
|
259 |
def get_history_interface() -> str:
|
260 |
+
try:
|
261 |
+
history = reviewer.get_history()
|
262 |
+
if not history:
|
263 |
+
return "No reviews yet."
|
264 |
+
result = ""
|
265 |
+
for review in history:
|
266 |
+
result += f"Time: {review['timestamp']}\n"
|
267 |
+
result += f"Language: {review['language']}\n"
|
268 |
+
result += f"Response Time: {review['response_time']}\n"
|
269 |
+
result += "Code:\n```\n" + review['code'] + "\n```\n"
|
270 |
+
result += "Suggestions:\n" + review['suggestions'] + "\n"
|
271 |
+
result += "-" * 80 + "\n\n"
|
272 |
+
return result
|
273 |
+
except Exception as e:
|
274 |
+
logger.error(f"History error: {e}")
|
275 |
+
return "Error retrieving history"
|
276 |
|
277 |
def get_metrics_interface() -> Dict:
|
278 |
+
try:
|
279 |
+
return reviewer.get_metrics()
|
280 |
+
except Exception as e:
|
281 |
+
logger.error(f"Metrics error: {e}")
|
282 |
+
return {"error": str(e)}
|
283 |
|
284 |
submit_btn.click(
|
285 |
review_code_interface,
|