Spaces:
Sleeping
Sleeping
Joash
commited on
Commit
·
defa041
1
Parent(s):
4a6c42f
Add history and metrics persistence with file storage
Browse files
app.py
CHANGED
@@ -25,6 +25,9 @@ MODEL_NAME = os.getenv("MODEL_NAME", "google/gemma-2b-it")
|
|
25 |
CACHE_DIR = "/home/user/.cache/huggingface"
|
26 |
os.makedirs(CACHE_DIR, exist_ok=True)
|
27 |
|
|
|
|
|
|
|
28 |
class Review:
|
29 |
def __init__(self, code: str, language: str, suggestions: str):
|
30 |
self.code = code
|
@@ -32,6 +35,22 @@ class Review:
|
|
32 |
self.suggestions = suggestions
|
33 |
self.timestamp = datetime.now().isoformat()
|
34 |
self.response_time = 0.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
class CodeReviewer:
|
37 |
def __init__(self):
|
@@ -45,6 +64,32 @@ class CodeReviewer:
|
|
45 |
'reviews_today': 0
|
46 |
}
|
47 |
self._initialized = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
@spaces.GPU
|
50 |
def ensure_initialized(self):
|
@@ -60,14 +105,12 @@ class CodeReviewer:
|
|
60 |
login(token=HF_TOKEN, add_to_git_credential=False)
|
61 |
|
62 |
logger.info("Loading tokenizer...")
|
63 |
-
# Initialize tokenizer with special tokens
|
64 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
65 |
MODEL_NAME,
|
66 |
token=HF_TOKEN,
|
67 |
trust_remote_code=True,
|
68 |
cache_dir=CACHE_DIR
|
69 |
)
|
70 |
-
# Ensure special tokens are set
|
71 |
special_tokens = {
|
72 |
'pad_token': '[PAD]',
|
73 |
'eos_token': '</s>',
|
@@ -87,13 +130,13 @@ class CodeReviewer:
|
|
87 |
cache_dir=CACHE_DIR,
|
88 |
token=HF_TOKEN
|
89 |
)
|
90 |
-
# Resize embeddings for special tokens if needed
|
91 |
if num_added > 0:
|
92 |
logger.info("Resizing model embeddings for special tokens")
|
93 |
self.model.resize_token_embeddings(len(self.tokenizer))
|
94 |
|
95 |
self.device = next(self.model.parameters()).device
|
96 |
logger.info(f"Model loaded successfully on {self.device}")
|
|
|
97 |
return True
|
98 |
except Exception as e:
|
99 |
logger.error(f"Error initializing model: {e}")
|
@@ -117,14 +160,12 @@ Code:
|
|
117 |
def review_code(self, code: str, language: str) -> str:
|
118 |
"""Perform code review using the model."""
|
119 |
try:
|
120 |
-
# Ensure model is initialized
|
121 |
if not self._initialized and not self.initialize_model():
|
122 |
return "Error: Model initialization failed. Please try again later."
|
123 |
|
124 |
start_time = datetime.now()
|
125 |
prompt = self.create_review_prompt(code, language)
|
126 |
|
127 |
-
# Tokenize with error handling
|
128 |
try:
|
129 |
inputs = self.tokenizer(
|
130 |
prompt,
|
@@ -140,7 +181,6 @@ Code:
|
|
140 |
logger.error(f"Tokenization error: {token_error}")
|
141 |
return "Error: Failed to process input code. Please try again."
|
142 |
|
143 |
-
# Generate with error handling
|
144 |
try:
|
145 |
with torch.no_grad():
|
146 |
outputs = self.model.generate(
|
@@ -158,7 +198,6 @@ Code:
|
|
158 |
logger.error(f"Generation error: {gen_error}")
|
159 |
return "Error: Failed to generate review. Please try again."
|
160 |
|
161 |
-
# Decode with error handling
|
162 |
try:
|
163 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
164 |
suggestions = response[len(prompt):].strip()
|
@@ -166,16 +205,14 @@ Code:
|
|
166 |
logger.error(f"Decoding error: {decode_error}")
|
167 |
return "Error: Failed to decode model output. Please try again."
|
168 |
|
169 |
-
# Create review and update metrics
|
170 |
end_time = datetime.now()
|
171 |
review = Review(code, language, suggestions)
|
172 |
review.response_time = (end_time - start_time).total_seconds()
|
173 |
self.review_history.append(review)
|
174 |
|
175 |
-
# Update metrics
|
176 |
self.update_metrics(review)
|
|
|
177 |
|
178 |
-
# Clear GPU memory
|
179 |
if self.device and self.device.type == "cuda":
|
180 |
del inputs, outputs
|
181 |
torch.cuda.empty_cache()
|
@@ -190,12 +227,10 @@ Code:
|
|
190 |
"""Update metrics with new review."""
|
191 |
self.metrics['total_reviews'] += 1
|
192 |
|
193 |
-
# Update average response time
|
194 |
total_time = self.metrics['avg_response_time'] * (self.metrics['total_reviews'] - 1)
|
195 |
total_time += review.response_time
|
196 |
self.metrics['avg_response_time'] = total_time / self.metrics['total_reviews']
|
197 |
|
198 |
-
# Update reviews today
|
199 |
today = datetime.now().date()
|
200 |
self.metrics['reviews_today'] = sum(
|
201 |
1 for r in self.review_history
|
@@ -212,7 +247,7 @@ Code:
|
|
212 |
'suggestions': r.suggestions,
|
213 |
'response_time': f"{r.response_time:.2f}s"
|
214 |
}
|
215 |
-
for r in reversed(self.review_history[-10:])
|
216 |
]
|
217 |
|
218 |
def get_metrics(self) -> Dict:
|
@@ -266,13 +301,12 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
266 |
label="Performance Metrics"
|
267 |
)
|
268 |
|
269 |
-
# Set up event handlers
|
270 |
@spaces.GPU
|
271 |
def review_code_interface(code: str, language: str) -> str:
|
272 |
if not code.strip():
|
273 |
return "Please enter some code to review."
|
274 |
try:
|
275 |
-
reviewer.ensure_initialized()
|
276 |
return reviewer.review_code(code, language)
|
277 |
except Exception as e:
|
278 |
logger.error(f"Interface error: {e}")
|
@@ -317,7 +351,6 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
317 |
outputs=metrics_output
|
318 |
)
|
319 |
|
320 |
-
# Add example inputs
|
321 |
gr.Examples(
|
322 |
examples=[
|
323 |
["""def add_numbers(a, b):
|
@@ -333,7 +366,6 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
333 |
inputs=[code_input, language_input]
|
334 |
)
|
335 |
|
336 |
-
# Launch the app
|
337 |
if __name__ == "__main__":
|
338 |
iface.launch(
|
339 |
server_name="0.0.0.0",
|
|
|
25 |
CACHE_DIR = "/home/user/.cache/huggingface"
|
26 |
os.makedirs(CACHE_DIR, exist_ok=True)
|
27 |
|
28 |
+
# History file
|
29 |
+
HISTORY_FILE = "review_history.json"
|
30 |
+
|
31 |
class Review:
|
32 |
def __init__(self, code: str, language: str, suggestions: str):
|
33 |
self.code = code
|
|
|
35 |
self.suggestions = suggestions
|
36 |
self.timestamp = datetime.now().isoformat()
|
37 |
self.response_time = 0.0
|
38 |
+
|
39 |
+
def to_dict(self):
|
40 |
+
return {
|
41 |
+
'timestamp': self.timestamp,
|
42 |
+
'language': self.language,
|
43 |
+
'code': self.code,
|
44 |
+
'suggestions': self.suggestions,
|
45 |
+
'response_time': self.response_time
|
46 |
+
}
|
47 |
+
|
48 |
+
@classmethod
|
49 |
+
def from_dict(cls, data):
|
50 |
+
review = cls(data['code'], data['language'], data['suggestions'])
|
51 |
+
review.timestamp = data['timestamp']
|
52 |
+
review.response_time = data['response_time']
|
53 |
+
return review
|
54 |
|
55 |
class CodeReviewer:
|
56 |
def __init__(self):
|
|
|
64 |
'reviews_today': 0
|
65 |
}
|
66 |
self._initialized = False
|
67 |
+
self.load_history()
|
68 |
+
|
69 |
+
def load_history(self):
|
70 |
+
"""Load review history from file."""
|
71 |
+
try:
|
72 |
+
if os.path.exists(HISTORY_FILE):
|
73 |
+
with open(HISTORY_FILE, 'r') as f:
|
74 |
+
data = json.load(f)
|
75 |
+
self.review_history = [Review.from_dict(r) for r in data['history']]
|
76 |
+
self.metrics = data['metrics']
|
77 |
+
logger.info(f"Loaded {len(self.review_history)} reviews from history")
|
78 |
+
except Exception as e:
|
79 |
+
logger.error(f"Error loading history: {e}")
|
80 |
+
|
81 |
+
def save_history(self):
|
82 |
+
"""Save review history to file."""
|
83 |
+
try:
|
84 |
+
data = {
|
85 |
+
'history': [r.to_dict() for r in self.review_history],
|
86 |
+
'metrics': self.metrics
|
87 |
+
}
|
88 |
+
with open(HISTORY_FILE, 'w') as f:
|
89 |
+
json.dump(data, f)
|
90 |
+
logger.info("Saved review history")
|
91 |
+
except Exception as e:
|
92 |
+
logger.error(f"Error saving history: {e}")
|
93 |
|
94 |
@spaces.GPU
|
95 |
def ensure_initialized(self):
|
|
|
105 |
login(token=HF_TOKEN, add_to_git_credential=False)
|
106 |
|
107 |
logger.info("Loading tokenizer...")
|
|
|
108 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
109 |
MODEL_NAME,
|
110 |
token=HF_TOKEN,
|
111 |
trust_remote_code=True,
|
112 |
cache_dir=CACHE_DIR
|
113 |
)
|
|
|
114 |
special_tokens = {
|
115 |
'pad_token': '[PAD]',
|
116 |
'eos_token': '</s>',
|
|
|
130 |
cache_dir=CACHE_DIR,
|
131 |
token=HF_TOKEN
|
132 |
)
|
|
|
133 |
if num_added > 0:
|
134 |
logger.info("Resizing model embeddings for special tokens")
|
135 |
self.model.resize_token_embeddings(len(self.tokenizer))
|
136 |
|
137 |
self.device = next(self.model.parameters()).device
|
138 |
logger.info(f"Model loaded successfully on {self.device}")
|
139 |
+
self._initialized = True
|
140 |
return True
|
141 |
except Exception as e:
|
142 |
logger.error(f"Error initializing model: {e}")
|
|
|
160 |
def review_code(self, code: str, language: str) -> str:
|
161 |
"""Perform code review using the model."""
|
162 |
try:
|
|
|
163 |
if not self._initialized and not self.initialize_model():
|
164 |
return "Error: Model initialization failed. Please try again later."
|
165 |
|
166 |
start_time = datetime.now()
|
167 |
prompt = self.create_review_prompt(code, language)
|
168 |
|
|
|
169 |
try:
|
170 |
inputs = self.tokenizer(
|
171 |
prompt,
|
|
|
181 |
logger.error(f"Tokenization error: {token_error}")
|
182 |
return "Error: Failed to process input code. Please try again."
|
183 |
|
|
|
184 |
try:
|
185 |
with torch.no_grad():
|
186 |
outputs = self.model.generate(
|
|
|
198 |
logger.error(f"Generation error: {gen_error}")
|
199 |
return "Error: Failed to generate review. Please try again."
|
200 |
|
|
|
201 |
try:
|
202 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
203 |
suggestions = response[len(prompt):].strip()
|
|
|
205 |
logger.error(f"Decoding error: {decode_error}")
|
206 |
return "Error: Failed to decode model output. Please try again."
|
207 |
|
|
|
208 |
end_time = datetime.now()
|
209 |
review = Review(code, language, suggestions)
|
210 |
review.response_time = (end_time - start_time).total_seconds()
|
211 |
self.review_history.append(review)
|
212 |
|
|
|
213 |
self.update_metrics(review)
|
214 |
+
self.save_history() # Save after each review
|
215 |
|
|
|
216 |
if self.device and self.device.type == "cuda":
|
217 |
del inputs, outputs
|
218 |
torch.cuda.empty_cache()
|
|
|
227 |
"""Update metrics with new review."""
|
228 |
self.metrics['total_reviews'] += 1
|
229 |
|
|
|
230 |
total_time = self.metrics['avg_response_time'] * (self.metrics['total_reviews'] - 1)
|
231 |
total_time += review.response_time
|
232 |
self.metrics['avg_response_time'] = total_time / self.metrics['total_reviews']
|
233 |
|
|
|
234 |
today = datetime.now().date()
|
235 |
self.metrics['reviews_today'] = sum(
|
236 |
1 for r in self.review_history
|
|
|
247 |
'suggestions': r.suggestions,
|
248 |
'response_time': f"{r.response_time:.2f}s"
|
249 |
}
|
250 |
+
for r in reversed(self.review_history[-10:])
|
251 |
]
|
252 |
|
253 |
def get_metrics(self) -> Dict:
|
|
|
301 |
label="Performance Metrics"
|
302 |
)
|
303 |
|
|
|
304 |
@spaces.GPU
|
305 |
def review_code_interface(code: str, language: str) -> str:
|
306 |
if not code.strip():
|
307 |
return "Please enter some code to review."
|
308 |
try:
|
309 |
+
reviewer.ensure_initialized()
|
310 |
return reviewer.review_code(code, language)
|
311 |
except Exception as e:
|
312 |
logger.error(f"Interface error: {e}")
|
|
|
351 |
outputs=metrics_output
|
352 |
)
|
353 |
|
|
|
354 |
gr.Examples(
|
355 |
examples=[
|
356 |
["""def add_numbers(a, b):
|
|
|
366 |
inputs=[code_input, language_input]
|
367 |
)
|
368 |
|
|
|
369 |
if __name__ == "__main__":
|
370 |
iface.launch(
|
371 |
server_name="0.0.0.0",
|