Joash2024 commited on
Commit
dcd4f06
·
1 Parent(s): a7f04dd

feat: add monitoring and problem types

Browse files
Files changed (1) hide show
  1. app.py +89 -38
app.py CHANGED
@@ -2,11 +2,15 @@ import gradio as gr
2
  import torch
3
  from transformers import AutoModelForCausalLM, AutoTokenizer
4
  from peft import PeftModel
 
5
 
6
  # Model configurations
7
  BASE_MODEL = "HuggingFaceTB/SmolLM2-1.7B-Instruct" # Base model
8
  ADAPTER_MODEL = "Joash2024/Math-SmolLM2-1.7B" # Our LoRA adapter
9
 
 
 
 
10
  print("Loading tokenizer...")
11
  tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
12
  tokenizer.pad_token = tokenizer.eos_token
@@ -22,17 +26,29 @@ print("Loading LoRA adapter...")
22
  model = PeftModel.from_pretrained(model, ADAPTER_MODEL)
23
  model.eval()
24
 
25
- def format_prompt(function: str) -> str:
26
  """Format input prompt for the model"""
27
- return f"""Given a mathematical function, find its derivative.
 
28
 
29
- Function: {function}
30
  The derivative of this function is:"""
 
 
 
 
 
 
 
31
 
32
- def generate_derivative(function: str, max_length: int = 200) -> str:
 
 
 
 
33
  """Generate derivative for a given function"""
34
  # Format the prompt
35
- prompt = format_prompt(function)
36
 
37
  # Tokenize
38
  inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
@@ -54,66 +70,101 @@ def generate_derivative(function: str, max_length: int = 200) -> str:
54
 
55
  return derivative
56
 
57
- def solve_derivative(function: str) -> str:
58
- """Solve derivative and format output"""
59
- if not function:
60
- return "Please enter a function"
 
 
 
61
 
62
- print(f"\nGenerating derivative for: {function}")
63
- derivative = generate_derivative(function)
 
 
 
 
 
64
 
65
  # Format output with step-by-step explanation
66
- output = f"""Generated derivative: {derivative}
67
 
68
  Let's verify this step by step:
69
- 1. Starting with f(x) = {function}
70
  2. Applying differentiation rules
71
- 3. We get f'(x) = {derivative}"""
 
 
 
72
 
73
- return output
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
 
75
  # Create Gradio interface
76
- with gr.Blocks(title="Mathematics Derivative Solver") as demo:
77
- gr.Markdown("# Mathematics Derivative Solver")
78
- gr.Markdown("Using our fine-tuned model to solve derivatives")
79
 
80
  with gr.Row():
81
  with gr.Column():
82
- function_input = gr.Textbox(
83
- label="Enter a function",
84
- placeholder="Example: x^2, sin(x), e^x"
 
85
  )
86
- solve_btn = gr.Button("Find Derivative", variant="primary")
 
 
 
 
87
 
88
  with gr.Row():
89
- output = gr.Textbox(
90
  label="Solution with Steps",
91
  lines=6
92
  )
93
 
94
- # Example functions
 
 
 
 
95
  gr.Examples(
96
  examples=[
97
- ["x^2"],
98
- ["\\sin{\\left(x\\right)}"],
99
- ["e^x"],
100
- ["\\frac{1}{x}"],
101
- ["x^3 + 2x"],
102
- ["\\cos{\\left(x^2\\right)}"],
103
- ["\\log{\\left(x\\right)}"],
104
- ["x e^{-x}"]
105
  ],
106
- inputs=function_input,
107
- outputs=output,
108
- fn=solve_derivative,
109
  cache_examples=True,
110
  )
111
 
112
  # Connect the interface
113
  solve_btn.click(
114
- fn=solve_derivative,
115
- inputs=[function_input],
116
- outputs=[output]
117
  )
118
 
119
  if __name__ == "__main__":
 
2
  import torch
3
  from transformers import AutoModelForCausalLM, AutoTokenizer
4
  from peft import PeftModel
5
+ from monitoring import PerformanceMonitor, measure_time
6
 
7
  # Model configurations
8
  BASE_MODEL = "HuggingFaceTB/SmolLM2-1.7B-Instruct" # Base model
9
  ADAPTER_MODEL = "Joash2024/Math-SmolLM2-1.7B" # Our LoRA adapter
10
 
11
+ # Initialize performance monitor
12
+ monitor = PerformanceMonitor()
13
+
14
  print("Loading tokenizer...")
15
  tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
16
  tokenizer.pad_token = tokenizer.eos_token
 
26
  model = PeftModel.from_pretrained(model, ADAPTER_MODEL)
27
  model.eval()
28
 
29
+ def format_prompt(problem: str, problem_type: str) -> str:
30
  """Format input prompt for the model"""
31
+ if problem_type == "Derivative":
32
+ return f"""Given a mathematical function, find its derivative.
33
 
34
+ Function: {problem}
35
  The derivative of this function is:"""
36
+ elif problem_type == "Addition":
37
+ return f"""Solve this addition problem.
38
+
39
+ Problem: {problem}
40
+ The solution is:"""
41
+ else: # Roots or Custom
42
+ return f"""Find the derivative of this function.
43
 
44
+ Function: {problem}
45
+ The derivative is:"""
46
+
47
+ @measure_time
48
+ def generate_derivative(problem: str, problem_type: str, max_length: int = 200) -> str:
49
  """Generate derivative for a given function"""
50
  # Format the prompt
51
+ prompt = format_prompt(problem, problem_type)
52
 
53
  # Tokenize
54
  inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
 
70
 
71
  return derivative
72
 
73
+ def solve_problem(problem: str, problem_type: str) -> tuple:
74
+ """Solve problem and format output"""
75
+ if not problem:
76
+ return "Please enter a problem", None
77
+
78
+ # Record problem type
79
+ monitor.record_problem_type(problem_type)
80
 
81
+ # Generate solution
82
+ print(f"\nGenerating solution for: {problem}")
83
+ solution, time_taken = generate_derivative(problem, problem_type)
84
+
85
+ # Record metrics
86
+ monitor.record_response_time("model", time_taken)
87
+ monitor.record_success("model", not solution.startswith("Error"))
88
 
89
  # Format output with step-by-step explanation
90
+ output = f"""Generated solution: {solution}
91
 
92
  Let's verify this step by step:
93
+ 1. Starting with f(x) = {problem}
94
  2. Applying differentiation rules
95
+ 3. We get f'(x) = {solution}"""
96
+
97
+ # Get updated statistics
98
+ stats = monitor.get_statistics()
99
 
100
+ # Format statistics for display
101
+ stats_display = f"""
102
+ ### Performance Metrics
103
+
104
+ #### Response Times
105
+ - Average: {stats.get('model_avg_response_time', 0):.2f} seconds
106
+
107
+ #### Success Rate
108
+ - {stats.get('model_success_rate', 0):.1f}%
109
+
110
+ #### Problem Types Used
111
+ """
112
+ for ptype, percentage in stats.get('problem_type_distribution', {}).items():
113
+ stats_display += f"- {ptype}: {percentage:.1f}%\n"
114
+
115
+ return output, stats_display
116
 
117
  # Create Gradio interface
118
+ with gr.Blocks(title="Mathematics Problem Solver") as demo:
119
+ gr.Markdown("# Mathematics Problem Solver")
120
+ gr.Markdown("Using our fine-tuned model to solve mathematical problems")
121
 
122
  with gr.Row():
123
  with gr.Column():
124
+ problem_type = gr.Dropdown(
125
+ choices=["Addition", "Root Finding", "Derivative", "Custom"],
126
+ value="Derivative",
127
+ label="Problem Type"
128
  )
129
+ problem_input = gr.Textbox(
130
+ label="Enter your problem",
131
+ placeholder="Example: x^2 + 3x"
132
+ )
133
+ solve_btn = gr.Button("Solve", variant="primary")
134
 
135
  with gr.Row():
136
+ solution_output = gr.Textbox(
137
  label="Solution with Steps",
138
  lines=6
139
  )
140
 
141
+ # Performance metrics display
142
+ with gr.Row():
143
+ metrics_display = gr.Markdown("### Performance Metrics\n*Solve a problem to see metrics*")
144
+
145
+ # Example problems
146
  gr.Examples(
147
  examples=[
148
+ ["x^2 + 3x", "Derivative"],
149
+ ["144", "Root Finding"],
150
+ ["235 + 567", "Addition"],
151
+ ["\\sin{\\left(x\\right)}", "Derivative"],
152
+ ["e^x", "Derivative"],
153
+ ["\\frac{1}{x}", "Derivative"],
154
+ ["x^3 + 2x", "Derivative"],
155
+ ["\\cos{\\left(x^2\\right)}", "Derivative"]
156
  ],
157
+ inputs=[problem_input, problem_type],
158
+ outputs=[solution_output, metrics_display],
159
+ fn=solve_problem,
160
  cache_examples=True,
161
  )
162
 
163
  # Connect the interface
164
  solve_btn.click(
165
+ fn=solve_problem,
166
+ inputs=[problem_input, problem_type],
167
+ outputs=[solution_output, metrics_display]
168
  )
169
 
170
  if __name__ == "__main__":