import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel from monitoring import PerformanceMonitor, measure_time # Model configurations BASE_MODEL = "HuggingFaceTB/SmolLM2-1.7B-Instruct" # Base model ADAPTER_MODEL = "Joash2024/Math-SmolLM2-1.7B" # Our LoRA adapter # Initialize performance monitor monitor = PerformanceMonitor() print("Loading tokenizer...") tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL) tokenizer.pad_token = tokenizer.eos_token print("Loading base model...") model = AutoModelForCausalLM.from_pretrained( BASE_MODEL, device_map="auto", torch_dtype=torch.float16 ) print("Loading LoRA adapter...") model = PeftModel.from_pretrained(model, ADAPTER_MODEL) model.eval() def format_prompt(problem: str, problem_type: str) -> str: """Format input prompt for the model""" if problem_type == "Derivative": return f"""Given a mathematical function, find its derivative. Function: {problem} The derivative of this function is:""" elif problem_type == "Addition": return f"""Solve this addition problem. Problem: {problem} The solution is:""" else: # Roots or Custom return f"""Find the derivative of this function. Function: {problem} The derivative is:""" @measure_time def generate_derivative(problem: str, problem_type: str, max_length: int = 200) -> str: """Generate derivative for a given function""" # Format the prompt prompt = format_prompt(problem, problem_type) # Tokenize inputs = tokenizer(prompt, return_tensors="pt").to(model.device) # Generate with torch.no_grad(): outputs = model.generate( **inputs, max_length=max_length, num_return_sequences=1, temperature=0.1, do_sample=True, pad_token_id=tokenizer.eos_token_id ) # Decode and extract derivative generated = tokenizer.decode(outputs[0], skip_special_tokens=True) derivative = generated[len(prompt):].strip() return derivative def solve_problem(problem: str, problem_type: str) -> tuple: """Solve problem and format output""" if not problem: return "Please enter a problem", None # Record problem type monitor.record_problem_type(problem_type) # Generate solution print(f"\nGenerating solution for: {problem}") solution, time_taken = generate_derivative(problem, problem_type) # Record metrics monitor.record_response_time("model", time_taken) monitor.record_success("model", not solution.startswith("Error")) # Format output with step-by-step explanation output = f"""Generated solution: {solution} Let's verify this step by step: 1. Starting with f(x) = {problem} 2. Applying differentiation rules 3. We get f'(x) = {solution}""" # Get updated statistics stats = monitor.get_statistics() # Format statistics for display stats_display = f""" ### Performance Metrics #### Response Times - Average: {stats.get('model_avg_response_time', 0):.2f} seconds #### Success Rate - {stats.get('model_success_rate', 0):.1f}% #### Problem Types Used """ for ptype, percentage in stats.get('problem_type_distribution', {}).items(): stats_display += f"- {ptype}: {percentage:.1f}%\n" return output, stats_display # Create Gradio interface with gr.Blocks(title="Mathematics Problem Solver") as demo: gr.Markdown("# Mathematics Problem Solver") gr.Markdown("Using our fine-tuned model to solve mathematical problems") with gr.Row(): with gr.Column(): problem_type = gr.Dropdown( choices=["Addition", "Root Finding", "Derivative", "Custom"], value="Derivative", label="Problem Type" ) problem_input = gr.Textbox( label="Enter your problem", placeholder="Example: x^2 + 3x" ) solve_btn = gr.Button("Solve", variant="primary") with gr.Row(): solution_output = gr.Textbox( label="Solution with Steps", lines=6 ) # Performance metrics display with gr.Row(): metrics_display = gr.Markdown("### Performance Metrics\n*Solve a problem to see metrics*") # Example problems gr.Examples( examples=[ ["x^2 + 3x", "Derivative"], ["144", "Root Finding"], ["235 + 567", "Addition"], ["\\sin{\\left(x\\right)}", "Derivative"], ["e^x", "Derivative"], ["\\frac{1}{x}", "Derivative"], ["x^3 + 2x", "Derivative"], ["\\cos{\\left(x^2\\right)}", "Derivative"] ], inputs=[problem_input, problem_type], outputs=[solution_output, metrics_display], fn=solve_problem, cache_examples=True, ) # Connect the interface solve_btn.click( fn=solve_problem, inputs=[problem_input, problem_type], outputs=[solution_output, metrics_display] ) if __name__ == "__main__": demo.launch()