File size: 4,967 Bytes
0e7ff76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import gradio as gr
from transformers import AutoTokenizer, pipeline
import torch
import numpy as np
from monitoring import PerformanceMonitor, measure_time

# Model IDs
BASE_MODEL_ID = "Alexis-Az/Math-Problem-LlaMA-3.2-1B-GGUF"
FINETUNED_MODEL_ID = "Alexis-Az/Math-Problem-LlaMA-3.2-1.7B-GGUF"

# Initialize performance monitor
monitor = PerformanceMonitor()

def format_prompt(problem):
    """Format the input problem according to the model's expected format"""
    return f"<|im_start|>user\nCan you help me solve this math problem? {problem}<|im_end|>\n"

@measure_time
def get_model_response(problem, model_id):
    """Get response from a specific model"""
    try:
        # Initialize pipeline
        pipe = pipeline(
            "text-generation",
            model=model_id,
            torch_dtype=torch.float16,
            device_map="auto",
        )
        
        # Format prompt and generate response
        prompt = format_prompt(problem)
        response = pipe(
            prompt,
            max_new_tokens=100,
            temperature=0.1,
            top_p=0.95,
            repetition_penalty=1.15
        )[0]["generated_text"]
        
        # Extract assistant's response
        assistant_response = response.split("<|im_start|>assistant\n")[-1].split("<|im_end|>")[0]
        return assistant_response.strip()
    except Exception as e:
        return f"Error: {str(e)}"

def solve_problem(problem, problem_type):
    """Solve a math problem using both models"""
    if not problem:
        return "Please enter a problem", "Please enter a problem", None
    
    # Record problem type
    monitor.record_problem_type(problem_type)
    
    # Add problem type context if provided
    if problem_type != "Custom":
        problem = f"{problem_type}: {problem}"
    
    # Get responses from both models with timing
    base_response, base_time = get_model_response(problem, BASE_MODEL_ID)
    finetuned_response, finetuned_time = get_model_response(problem, FINETUNED_MODEL_ID)
    
    # Record response times
    monitor.record_response_time("base", base_time)
    monitor.record_response_time("finetuned", finetuned_time)
    
    # Record success (basic check - no error message)
    monitor.record_success("base", not base_response.startswith("Error"))
    monitor.record_success("finetuned", not finetuned_response.startswith("Error"))
    
    # Get updated statistics
    stats = monitor.get_statistics()
    
    # Format statistics for display
    stats_display = f"""
### Performance Metrics

#### Response Times (seconds)
- Base Model: {stats.get('base_avg_response_time', 0):.2f} avg
- Fine-tuned Model: {stats.get('finetuned_avg_response_time', 0):.2f} avg

#### Success Rates
- Base Model: {stats.get('base_success_rate', 0):.1f}%
- Fine-tuned Model: {stats.get('finetuned_success_rate', 0):.1f}%

#### Problem Type Distribution
"""
    for ptype, percentage in stats.get('problem_type_distribution', {}).items():
        stats_display += f"- {ptype}: {percentage:.1f}%\n"
    
    return base_response, finetuned_response, stats_display

# Create Gradio interface
with gr.Blocks(title="Mathematics Problem Solver") as demo:
    gr.Markdown("# Mathematics Problem Solver")
    gr.Markdown("Compare solutions between base (1B) and fine-tuned (1.7B) models")
    
    with gr.Row():
        with gr.Column():
            problem_type = gr.Dropdown(
                choices=["Addition", "Root Finding", "Derivative", "Custom"],
                value="Custom",
                label="Problem Type"
            )
            problem_input = gr.Textbox(
                label="Enter your math problem",
                placeholder="Example: Find the derivative of x^2 + 3x"
            )
            solve_btn = gr.Button("Solve", variant="primary")
    
    with gr.Row():
        with gr.Column():
            gr.Markdown("### Base Model (1B)")
            base_output = gr.Textbox(label="Base Model Solution", lines=5)
        
        with gr.Column():
            gr.Markdown("### Fine-tuned Model (1.7B)")
            finetuned_output = gr.Textbox(label="Fine-tuned Model Solution", lines=5)
    
    # Performance metrics display
    with gr.Row():
        metrics_display = gr.Markdown("### Performance Metrics\n*Solve a problem to see metrics*")
    
    # Example problems
    gr.Examples(
        examples=[
            ["Find the derivative of x^2 + 3x", "Derivative"],
            ["What is the square root of 144?", "Root Finding"],
            ["Calculate 235 + 567", "Addition"],
        ],
        inputs=[problem_input, problem_type],
        outputs=[base_output, finetuned_output, metrics_display],
        fn=solve_problem,
        cache_examples=True,
    )
    
    # Connect the interface
    solve_btn.click(
        fn=solve_problem,
        inputs=[problem_input, problem_type],
        outputs=[base_output, finetuned_output, metrics_display]
    )

if __name__ == "__main__":
    demo.launch()