File size: 5,503 Bytes
0e7ff76
98a6116
0e7ff76
 
 
 
 
c5de890
 
0e7ff76
 
 
 
 
 
98a6116
0e7ff76
 
 
 
 
98a6116
0e7ff76
 
 
 
 
98a6116
0e7ff76
 
 
 
 
 
98a6116
0e7ff76
98a6116
 
 
0e7ff76
 
98a6116
0e7ff76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98a6116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e7ff76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98a6116
0e7ff76
 
 
 
98a6116
0e7ff76
 
 
 
c5de890
0e7ff76
 
 
 
 
98a6116
0e7ff76
 
 
 
98a6116
0e7ff76
 
 
 
 
c5de890
0e7ff76
 
 
c5de890
0e7ff76
 
 
 
 
 
 
 
 
98a6116
 
 
c5de890
 
 
 
 
0e7ff76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import gradio as gr
from transformers import pipeline
import torch
import numpy as np
from monitoring import PerformanceMonitor, measure_time

# Model IDs
BASE_MODEL_ID = "HuggingFaceTB/SmolLM2-1.7B-Instruct"  # Base model
FINETUNED_MODEL_ID = "Joash2024/Math-SmolLM2-1.7B"     # Our fine-tuned model

# Initialize performance monitor
monitor = PerformanceMonitor()

def format_prompt(problem):
    """Format the input problem according to the model's expected format"""
    return f"Given a mathematical function, find its derivative.\n\nFunction: {problem}\nThe derivative of this function is:"

@measure_time
def get_model_response(problem, model_id):
    """Get response from a specific model"""
    try:
        # Initialize pipeline for each request
        pipe = pipeline(
            "text-generation",
            model=model_id,
            torch_dtype=torch.float16,
            device_map="auto",
            model_kwargs={"low_cpu_mem_usage": True}
        )
        
        # Format prompt and generate response
        prompt = format_prompt(problem)
        response = pipe(
            prompt,
            max_new_tokens=50,  # Shorter response
            temperature=0.1,
            do_sample=False,  # Deterministic
            num_return_sequences=1,
            return_full_text=False  # Only return new text
        )[0]["generated_text"]
        
        return response.strip()
    except Exception as e:
        return f"Error: {str(e)}"

def solve_problem(problem, problem_type):
    """Solve a math problem using both models"""
    if not problem:
        return "Please enter a problem", "Please enter a problem", None
    
    # Record problem type
    monitor.record_problem_type(problem_type)
    
    # Add problem type context if provided
    if problem_type != "Custom":
        problem = f"{problem_type}: {problem}"
    
    # Get responses from both models with timing
    base_response, base_time = get_model_response(problem, BASE_MODEL_ID)
    finetuned_response, finetuned_time = get_model_response(problem, FINETUNED_MODEL_ID)
    
    # Format responses with steps
    base_output = f"""Solution: {base_response}

Let's verify this step by step:
1. Starting with f(x) = {problem}
2. Applying differentiation rules
3. We get f'(x) = {base_response}"""

    finetuned_output = f"""Solution: {finetuned_response}

Let's verify this step by step:
1. Starting with f(x) = {problem}
2. Applying differentiation rules
3. We get f'(x) = {finetuned_response}"""
    
    # Record metrics
    monitor.record_response_time("base", base_time)
    monitor.record_response_time("finetuned", finetuned_time)
    monitor.record_success("base", not base_response.startswith("Error"))
    monitor.record_success("finetuned", not finetuned_response.startswith("Error"))
    
    # Get updated statistics
    stats = monitor.get_statistics()
    
    # Format statistics for display
    stats_display = f"""
### Performance Metrics

#### Response Times (seconds)
- Base Model: {stats.get('base_avg_response_time', 0):.2f} avg
- Fine-tuned Model: {stats.get('finetuned_avg_response_time', 0):.2f} avg

#### Success Rates
- Base Model: {stats.get('base_success_rate', 0):.1f}%
- Fine-tuned Model: {stats.get('finetuned_success_rate', 0):.1f}%

#### Problem Types Used
"""
    for ptype, percentage in stats.get('problem_type_distribution', {}).items():
        stats_display += f"- {ptype}: {percentage:.1f}%\n"
    
    return base_output, finetuned_output, stats_display

# Create Gradio interface
with gr.Blocks(title="Mathematics Problem Solver") as demo:
    gr.Markdown("# Mathematics Problem Solver")
    gr.Markdown("Compare solutions between base and fine-tuned models")
    
    with gr.Row():
        with gr.Column():
            problem_type = gr.Dropdown(
                choices=["Addition", "Root Finding", "Derivative", "Custom"],
                value="Derivative",
                label="Problem Type"
            )
            problem_input = gr.Textbox(
                label="Enter your math problem",
                placeholder="Example: x^2 + 3x"
            )
            solve_btn = gr.Button("Solve", variant="primary")
    
    with gr.Row():
        with gr.Column():
            gr.Markdown("### Base Model")
            base_output = gr.Textbox(label="Base Model Solution", lines=5)
        
        with gr.Column():
            gr.Markdown("### Fine-tuned Model")
            finetuned_output = gr.Textbox(label="Fine-tuned Model Solution", lines=5)
    
    # Performance metrics display
    with gr.Row():
        metrics_display = gr.Markdown("### Performance Metrics\n*Solve a problem to see metrics*")
    
    # Example problems
    gr.Examples(
        examples=[
            ["x^2 + 3x", "Derivative"],
            ["144", "Root Finding"],
            ["235 + 567", "Addition"],
            ["\\sin{\\left(x\\right)}", "Derivative"],
            ["e^x", "Derivative"],
            ["\\frac{1}{x}", "Derivative"],
            ["x^3 + 2x", "Derivative"],
            ["\\cos{\\left(x^2\\right)}", "Derivative"]
        ],
        inputs=[problem_input, problem_type],
        outputs=[base_output, finetuned_output, metrics_display],
        fn=solve_problem,
        cache_examples=True,
    )
    
    # Connect the interface
    solve_btn.click(
        fn=solve_problem,
        inputs=[problem_input, problem_type],
        outputs=[base_output, finetuned_output, metrics_display]
    )

if __name__ == "__main__":
    demo.launch()