Spaces:
Sleeping
Sleeping
File size: 5,503 Bytes
0e7ff76 98a6116 0e7ff76 c5de890 0e7ff76 98a6116 0e7ff76 98a6116 0e7ff76 98a6116 0e7ff76 98a6116 0e7ff76 98a6116 0e7ff76 98a6116 0e7ff76 98a6116 0e7ff76 98a6116 0e7ff76 98a6116 0e7ff76 c5de890 0e7ff76 98a6116 0e7ff76 98a6116 0e7ff76 c5de890 0e7ff76 c5de890 0e7ff76 98a6116 c5de890 0e7ff76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import gradio as gr
from transformers import pipeline
import torch
import numpy as np
from monitoring import PerformanceMonitor, measure_time
# Model IDs
BASE_MODEL_ID = "HuggingFaceTB/SmolLM2-1.7B-Instruct" # Base model
FINETUNED_MODEL_ID = "Joash2024/Math-SmolLM2-1.7B" # Our fine-tuned model
# Initialize performance monitor
monitor = PerformanceMonitor()
def format_prompt(problem):
"""Format the input problem according to the model's expected format"""
return f"Given a mathematical function, find its derivative.\n\nFunction: {problem}\nThe derivative of this function is:"
@measure_time
def get_model_response(problem, model_id):
"""Get response from a specific model"""
try:
# Initialize pipeline for each request
pipe = pipeline(
"text-generation",
model=model_id,
torch_dtype=torch.float16,
device_map="auto",
model_kwargs={"low_cpu_mem_usage": True}
)
# Format prompt and generate response
prompt = format_prompt(problem)
response = pipe(
prompt,
max_new_tokens=50, # Shorter response
temperature=0.1,
do_sample=False, # Deterministic
num_return_sequences=1,
return_full_text=False # Only return new text
)[0]["generated_text"]
return response.strip()
except Exception as e:
return f"Error: {str(e)}"
def solve_problem(problem, problem_type):
"""Solve a math problem using both models"""
if not problem:
return "Please enter a problem", "Please enter a problem", None
# Record problem type
monitor.record_problem_type(problem_type)
# Add problem type context if provided
if problem_type != "Custom":
problem = f"{problem_type}: {problem}"
# Get responses from both models with timing
base_response, base_time = get_model_response(problem, BASE_MODEL_ID)
finetuned_response, finetuned_time = get_model_response(problem, FINETUNED_MODEL_ID)
# Format responses with steps
base_output = f"""Solution: {base_response}
Let's verify this step by step:
1. Starting with f(x) = {problem}
2. Applying differentiation rules
3. We get f'(x) = {base_response}"""
finetuned_output = f"""Solution: {finetuned_response}
Let's verify this step by step:
1. Starting with f(x) = {problem}
2. Applying differentiation rules
3. We get f'(x) = {finetuned_response}"""
# Record metrics
monitor.record_response_time("base", base_time)
monitor.record_response_time("finetuned", finetuned_time)
monitor.record_success("base", not base_response.startswith("Error"))
monitor.record_success("finetuned", not finetuned_response.startswith("Error"))
# Get updated statistics
stats = monitor.get_statistics()
# Format statistics for display
stats_display = f"""
### Performance Metrics
#### Response Times (seconds)
- Base Model: {stats.get('base_avg_response_time', 0):.2f} avg
- Fine-tuned Model: {stats.get('finetuned_avg_response_time', 0):.2f} avg
#### Success Rates
- Base Model: {stats.get('base_success_rate', 0):.1f}%
- Fine-tuned Model: {stats.get('finetuned_success_rate', 0):.1f}%
#### Problem Types Used
"""
for ptype, percentage in stats.get('problem_type_distribution', {}).items():
stats_display += f"- {ptype}: {percentage:.1f}%\n"
return base_output, finetuned_output, stats_display
# Create Gradio interface
with gr.Blocks(title="Mathematics Problem Solver") as demo:
gr.Markdown("# Mathematics Problem Solver")
gr.Markdown("Compare solutions between base and fine-tuned models")
with gr.Row():
with gr.Column():
problem_type = gr.Dropdown(
choices=["Addition", "Root Finding", "Derivative", "Custom"],
value="Derivative",
label="Problem Type"
)
problem_input = gr.Textbox(
label="Enter your math problem",
placeholder="Example: x^2 + 3x"
)
solve_btn = gr.Button("Solve", variant="primary")
with gr.Row():
with gr.Column():
gr.Markdown("### Base Model")
base_output = gr.Textbox(label="Base Model Solution", lines=5)
with gr.Column():
gr.Markdown("### Fine-tuned Model")
finetuned_output = gr.Textbox(label="Fine-tuned Model Solution", lines=5)
# Performance metrics display
with gr.Row():
metrics_display = gr.Markdown("### Performance Metrics\n*Solve a problem to see metrics*")
# Example problems
gr.Examples(
examples=[
["x^2 + 3x", "Derivative"],
["144", "Root Finding"],
["235 + 567", "Addition"],
["\\sin{\\left(x\\right)}", "Derivative"],
["e^x", "Derivative"],
["\\frac{1}{x}", "Derivative"],
["x^3 + 2x", "Derivative"],
["\\cos{\\left(x^2\\right)}", "Derivative"]
],
inputs=[problem_input, problem_type],
outputs=[base_output, finetuned_output, metrics_display],
fn=solve_problem,
cache_examples=True,
)
# Connect the interface
solve_btn.click(
fn=solve_problem,
inputs=[problem_input, problem_type],
outputs=[base_output, finetuned_output, metrics_display]
)
if __name__ == "__main__":
demo.launch()
|