Spaces:
Sleeping
Sleeping
File size: 6,093 Bytes
0e7ff76 344dad8 d2da9d1 0e7ff76 344dad8 0e7ff76 d2da9d1 344dad8 0e7ff76 344dad8 d2da9d1 344dad8 0e7ff76 d2da9d1 344dad8 d2da9d1 344dad8 d2da9d1 344dad8 d2da9d1 344dad8 d2da9d1 0e7ff76 d2da9d1 0e7ff76 344dad8 0e7ff76 344dad8 d2da9d1 344dad8 0e7ff76 d2da9d1 344dad8 d2da9d1 0e7ff76 d2da9d1 98a6116 d2da9d1 98a6116 d2da9d1 0e7ff76 d2da9d1 0e7ff76 344dad8 d2da9d1 344dad8 d2da9d1 0e7ff76 d2da9d1 0e7ff76 d2da9d1 0e7ff76 d2da9d1 0e7ff76 d2da9d1 0e7ff76 d2da9d1 0e7ff76 d2da9d1 0e7ff76 d2da9d1 0e7ff76 d2da9d1 0e7ff76 d2da9d1 0e7ff76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
from monitoring import PerformanceMonitor, measure_time
# Model configurations
BASE_MODEL = "HuggingFaceTB/SmolLM2-1.7B-Instruct" # Base model
ADAPTER_MODEL = "Joash2024/Math-SmolLM2-1.7B" # Our LoRA adapter
# Initialize performance monitor
monitor = PerformanceMonitor()
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
tokenizer.pad_token = tokenizer.eos_token
print("Loading base model...")
base_model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
device_map="auto",
torch_dtype=torch.float16
)
print("Loading fine-tuned model...")
finetuned_model = PeftModel.from_pretrained(base_model, ADAPTER_MODEL)
# Set models to eval mode
base_model.eval()
finetuned_model.eval()
def format_prompt(problem: str, problem_type: str) -> str:
"""Format input prompt for the model"""
if problem_type == "Derivative":
return f"""Given a mathematical function, find its derivative.
Function: {problem}
The derivative of this function is:"""
elif problem_type == "Addition":
return f"""Solve this addition problem.
Problem: {problem}
The solution is:"""
else: # Roots or Custom
return f"""Find the derivative of this function.
Function: {problem}
The derivative is:"""
@measure_time
def get_model_response(problem: str, problem_type: str, model) -> str:
"""Generate response from a specific model"""
# Format prompt
prompt = format_prompt(problem, problem_type)
# Tokenize
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# Generate
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=100,
num_return_sequences=1,
temperature=0.1,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
# Decode and extract response
generated = tokenizer.decode(outputs[0], skip_special_tokens=True)
response = generated[len(prompt):].strip()
return response
def solve_problem(problem: str, problem_type: str) -> tuple:
"""Solve a math problem using both models"""
if not problem:
return "Please enter a problem", "Please enter a problem", None
# Record problem type
monitor.record_problem_type(problem_type)
# Get responses from both models with timing
base_response, base_time = get_model_response(problem, problem_type, base_model)
finetuned_response, finetuned_time = get_model_response(problem, problem_type, finetuned_model)
# Format responses with steps
base_output = f"""Solution: {base_response}
Let's verify this step by step:
1. Starting with f(x) = {problem}
2. Applying differentiation rules
3. We get f'(x) = {base_response}"""
finetuned_output = f"""Solution: {finetuned_response}
Let's verify this step by step:
1. Starting with f(x) = {problem}
2. Applying differentiation rules
3. We get f'(x) = {finetuned_response}"""
# Record metrics
monitor.record_response_time("base", base_time)
monitor.record_response_time("finetuned", finetuned_time)
monitor.record_success("base", not base_response.startswith("Error"))
monitor.record_success("finetuned", not finetuned_response.startswith("Error"))
# Get updated statistics
stats = monitor.get_statistics()
# Format statistics for display
stats_display = f"""
### Performance Metrics
#### Response Times (seconds)
- Base Model: {stats.get('base_avg_response_time', 0):.2f} avg
- Fine-tuned Model: {stats.get('finetuned_avg_response_time', 0):.2f} avg
#### Success Rates
- Base Model: {stats.get('base_success_rate', 0):.1f}%
- Fine-tuned Model: {stats.get('finetuned_success_rate', 0):.1f}%
#### Problem Types Used
"""
for ptype, percentage in stats.get('problem_type_distribution', {}).items():
stats_display += f"- {ptype}: {percentage:.1f}%\n"
return base_output, finetuned_output, stats_display
# Create Gradio interface
with gr.Blocks(title="Mathematics Problem Solver") as demo:
gr.Markdown("# Mathematics Problem Solver")
gr.Markdown("Compare solutions between base and fine-tuned models")
with gr.Row():
with gr.Column():
problem_type = gr.Dropdown(
choices=["Addition", "Root Finding", "Derivative", "Custom"],
value="Derivative",
label="Problem Type"
)
problem_input = gr.Textbox(
label="Enter your math problem",
placeholder="Example: x^2 + 3x"
)
solve_btn = gr.Button("Solve", variant="primary")
with gr.Row():
with gr.Column():
gr.Markdown("### Base Model")
base_output = gr.Textbox(label="Base Model Solution", lines=5)
with gr.Column():
gr.Markdown("### Fine-tuned Model")
finetuned_output = gr.Textbox(label="Fine-tuned Model Solution", lines=5)
# Performance metrics display
with gr.Row():
metrics_display = gr.Markdown("### Performance Metrics\n*Solve a problem to see metrics*")
# Example problems
gr.Examples(
examples=[
["x^2 + 3x", "Derivative"],
["144", "Root Finding"],
["235 + 567", "Addition"],
["\\sin{\\left(x\\right)}", "Derivative"],
["e^x", "Derivative"],
["\\frac{1}{x}", "Derivative"],
["x^3 + 2x", "Derivative"],
["\\cos{\\left(x^2\\right)}", "Derivative"]
],
inputs=[problem_input, problem_type],
outputs=[base_output, finetuned_output, metrics_display],
fn=solve_problem,
cache_examples=True,
)
# Connect the interface
solve_btn.click(
fn=solve_problem,
inputs=[problem_input, problem_type],
outputs=[base_output, finetuned_output, metrics_display]
)
if __name__ == "__main__":
demo.launch()
|