File size: 6,093 Bytes
0e7ff76
 
344dad8
 
d2da9d1
0e7ff76
344dad8
 
 
0e7ff76
d2da9d1
 
 
344dad8
 
 
0e7ff76
344dad8
d2da9d1
344dad8
 
 
 
0e7ff76
d2da9d1
 
 
 
 
 
344dad8
d2da9d1
344dad8
d2da9d1
 
344dad8
d2da9d1
344dad8
d2da9d1
 
 
 
 
 
 
0e7ff76
d2da9d1
 
 
 
 
 
 
 
0e7ff76
344dad8
 
0e7ff76
344dad8
 
 
 
d2da9d1
344dad8
 
 
 
 
0e7ff76
d2da9d1
344dad8
d2da9d1
0e7ff76
d2da9d1
98a6116
d2da9d1
 
 
 
 
 
 
98a6116
d2da9d1
 
 
0e7ff76
d2da9d1
 
0e7ff76
344dad8
d2da9d1
344dad8
d2da9d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e7ff76
d2da9d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e7ff76
 
d2da9d1
 
 
0e7ff76
 
 
d2da9d1
 
 
 
 
 
 
 
0e7ff76
d2da9d1
0e7ff76
 
d2da9d1
 
 
 
 
 
 
 
 
 
 
0e7ff76
d2da9d1
0e7ff76
 
d2da9d1
 
 
 
 
 
 
 
0e7ff76
d2da9d1
 
 
0e7ff76
 
 
 
 
d2da9d1
 
 
0e7ff76
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
from monitoring import PerformanceMonitor, measure_time

# Model configurations
BASE_MODEL = "HuggingFaceTB/SmolLM2-1.7B-Instruct"  # Base model
ADAPTER_MODEL = "Joash2024/Math-SmolLM2-1.7B"       # Our LoRA adapter

# Initialize performance monitor
monitor = PerformanceMonitor()

print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
tokenizer.pad_token = tokenizer.eos_token

print("Loading base model...")
base_model = AutoModelForCausalLM.from_pretrained(
    BASE_MODEL,
    device_map="auto",
    torch_dtype=torch.float16
)

print("Loading fine-tuned model...")
finetuned_model = PeftModel.from_pretrained(base_model, ADAPTER_MODEL)

# Set models to eval mode
base_model.eval()
finetuned_model.eval()

def format_prompt(problem: str, problem_type: str) -> str:
    """Format input prompt for the model"""
    if problem_type == "Derivative":
        return f"""Given a mathematical function, find its derivative.

Function: {problem}
The derivative of this function is:"""
    elif problem_type == "Addition":
        return f"""Solve this addition problem.

Problem: {problem}
The solution is:"""
    else:  # Roots or Custom
        return f"""Find the derivative of this function.

Function: {problem}
The derivative is:"""

@measure_time
def get_model_response(problem: str, problem_type: str, model) -> str:
    """Generate response from a specific model"""
    # Format prompt
    prompt = format_prompt(problem, problem_type)
    
    # Tokenize
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    
    # Generate
    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_length=100,
            num_return_sequences=1,
            temperature=0.1,
            do_sample=True,
            pad_token_id=tokenizer.eos_token_id
        )
    
    # Decode and extract response
    generated = tokenizer.decode(outputs[0], skip_special_tokens=True)
    response = generated[len(prompt):].strip()
    
    return response

def solve_problem(problem: str, problem_type: str) -> tuple:
    """Solve a math problem using both models"""
    if not problem:
        return "Please enter a problem", "Please enter a problem", None
    
    # Record problem type
    monitor.record_problem_type(problem_type)
    
    # Get responses from both models with timing
    base_response, base_time = get_model_response(problem, problem_type, base_model)
    finetuned_response, finetuned_time = get_model_response(problem, problem_type, finetuned_model)
    
    # Format responses with steps
    base_output = f"""Solution: {base_response}

Let's verify this step by step:
1. Starting with f(x) = {problem}
2. Applying differentiation rules
3. We get f'(x) = {base_response}"""

    finetuned_output = f"""Solution: {finetuned_response}

Let's verify this step by step:
1. Starting with f(x) = {problem}
2. Applying differentiation rules
3. We get f'(x) = {finetuned_response}"""
    
    # Record metrics
    monitor.record_response_time("base", base_time)
    monitor.record_response_time("finetuned", finetuned_time)
    monitor.record_success("base", not base_response.startswith("Error"))
    monitor.record_success("finetuned", not finetuned_response.startswith("Error"))
    
    # Get updated statistics
    stats = monitor.get_statistics()
    
    # Format statistics for display
    stats_display = f"""
### Performance Metrics

#### Response Times (seconds)
- Base Model: {stats.get('base_avg_response_time', 0):.2f} avg
- Fine-tuned Model: {stats.get('finetuned_avg_response_time', 0):.2f} avg

#### Success Rates
- Base Model: {stats.get('base_success_rate', 0):.1f}%
- Fine-tuned Model: {stats.get('finetuned_success_rate', 0):.1f}%

#### Problem Types Used
"""
    for ptype, percentage in stats.get('problem_type_distribution', {}).items():
        stats_display += f"- {ptype}: {percentage:.1f}%\n"
    
    return base_output, finetuned_output, stats_display

# Create Gradio interface
with gr.Blocks(title="Mathematics Problem Solver") as demo:
    gr.Markdown("# Mathematics Problem Solver")
    gr.Markdown("Compare solutions between base and fine-tuned models")
    
    with gr.Row():
        with gr.Column():
            problem_type = gr.Dropdown(
                choices=["Addition", "Root Finding", "Derivative", "Custom"],
                value="Derivative",
                label="Problem Type"
            )
            problem_input = gr.Textbox(
                label="Enter your math problem",
                placeholder="Example: x^2 + 3x"
            )
            solve_btn = gr.Button("Solve", variant="primary")
    
    with gr.Row():
        with gr.Column():
            gr.Markdown("### Base Model")
            base_output = gr.Textbox(label="Base Model Solution", lines=5)
        
        with gr.Column():
            gr.Markdown("### Fine-tuned Model")
            finetuned_output = gr.Textbox(label="Fine-tuned Model Solution", lines=5)
    
    # Performance metrics display
    with gr.Row():
        metrics_display = gr.Markdown("### Performance Metrics\n*Solve a problem to see metrics*")
    
    # Example problems
    gr.Examples(
        examples=[
            ["x^2 + 3x", "Derivative"],
            ["144", "Root Finding"],
            ["235 + 567", "Addition"],
            ["\\sin{\\left(x\\right)}", "Derivative"],
            ["e^x", "Derivative"],
            ["\\frac{1}{x}", "Derivative"],
            ["x^3 + 2x", "Derivative"],
            ["\\cos{\\left(x^2\\right)}", "Derivative"]
        ],
        inputs=[problem_input, problem_type],
        outputs=[base_output, finetuned_output, metrics_display],
        fn=solve_problem,
        cache_examples=True,
    )
    
    # Connect the interface
    solve_btn.click(
        fn=solve_problem,
        inputs=[problem_input, problem_type],
        outputs=[base_output, finetuned_output, metrics_display]
    )

if __name__ == "__main__":
    demo.launch()