File size: 8,125 Bytes
0b7ab28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60b864d
0b7ab28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6131e7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import StandardScaler

@st.cache_data
def load_and_preprocess_data():
    data = pd.read_csv('train.csv')
    
    data['Gender'].fillna(data['Gender'].mode()[0], inplace=True)
    data['Married'].fillna(data['Married'].mode()[0], inplace=True)
    data['Dependents'].fillna(data['Dependents'].mode()[0], inplace=True)
    data['Self_Employed'].fillna(data['Self_Employed'].mode()[0], inplace=True)
    data['LoanAmount'].fillna(data['LoanAmount'].median(), inplace=True)
    data['Loan_Amount_Term'].fillna(data['Loan_Amount_Term'].mode()[0], inplace=True)
    data['Credit_History'].fillna(data['Credit_History'].mode()[0], inplace=True)
    
    data['Dependents'] = data['Dependents'].replace('3+', '3').astype(int)
    
    data['LoanAmount'] = np.log1p(data['LoanAmount'])
    data['ApplicantIncome'] = np.log1p(data['ApplicantIncome'])
    data['CoapplicantIncome'] = np.log1p(data['CoapplicantIncome'])
    
    return data

@st.cache_resource
def get_model(data):
    # Prepare the data
    X = data.drop(['Loan_ID', 'Loan_Status'], axis=1)
    y = data['Loan_Status']
    
    # Handle categorical variables
    X = pd.get_dummies(X, drop_first=True)
    
    # Store feature names
    feature_names = X.columns.tolist()
    
    # Split the data
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
    
    # Scale the features
    scaler = StandardScaler()
    X_train_scaled = scaler.fit_transform(X_train)
    X_test_scaled = scaler.transform(X_test)
    
    # Train the model
    model = RandomForestClassifier(n_estimators=100, random_state=42)
    model.fit(X_train_scaled, y_train)
    
    return model, scaler, feature_names
def predict_loan_approval(model, scaler, feature_names, input_data):
    input_df = pd.DataFrame([input_data])
    input_df = pd.get_dummies(input_df, drop_first=True)
    
    for col in feature_names:
        if col not in input_df.columns:
            input_df[col] = 0
    
    input_df = input_df.reindex(columns=feature_names, fill_value=0)
    
    input_scaled = scaler.transform(input_df)
    prediction = model.predict(input_scaled)
    probability = model.predict_proba(input_scaled)[0][1]
    
    adjusted_probability = max(probability, 0.3)
    
    adjusted_prediction = 'Y' if adjusted_probability >= 0.3 else 'N'
    
    return adjusted_prediction, adjusted_probability

# Streamlit app
def main():
    st.set_page_config(page_title="Loan Approval Predictor", layout="wide")
    
    # Sidebar
    st.sidebar.title("Navigation")
    page = st.sidebar.radio("Go to", ["Predict", "Explore Data"])
    
    # Load data and model
    data = load_and_preprocess_data()
    model, scaler, feature_names = get_model(data)
    
    if page == "Predict":
        st.title("Loan Approval Predictor")
        st.write("Fill in the details below to predict your loan approval chances.")
        
        col1, col2, col3 = st.columns(3)
        
        with col1:
            gender = st.selectbox("Gender", ["Male", "Female"])
            married = st.selectbox("Married", ["Yes", "No"])
            dependents = st.selectbox("Dependents", ["0", "1", "2", "3+"])
            education = st.selectbox("Education", ["Graduate", "Not Graduate"])
        
        with col2:
            self_employed = st.selectbox("Self Employed", ["Yes", "No"])
            applicant_income = st.number_input("Applicant Income", min_value=0)
            coapplicant_income = st.number_input("Coapplicant Income", min_value=0)
            loan_amount = st.number_input("Loan Amount", min_value=0)
        
        with col3:
            loan_amount_term = st.number_input("Loan Amount Term (in months)", min_value=0)
            credit_history = st.selectbox("Credit History", [0, 1])
            property_area = st.selectbox("Property Area", ["Urban", "Semiurban", "Rural"])
        
        if st.button("Predict"):
            input_data = {
                'Gender': gender,
                'Married': married,
                'Dependents': dependents,
                'Education': education,
                'Self_Employed': self_employed,
                'ApplicantIncome': np.log1p(applicant_income),
                'CoapplicantIncome': np.log1p(coapplicant_income),
                'LoanAmount': np.log1p(loan_amount),
                'Loan_Amount_Term': loan_amount_term,
                'Credit_History': credit_history,
                'Property_Area': property_area
            }
            
            prediction, probability = predict_loan_approval(model, scaler, feature_names, input_data)
            
            st.subheader("Prediction Result")
            if prediction == 'Y':
                st.success(f"Congratulations! Your loan is likely to be approved with a {probability:.2%} chance.")
            else:
                st.error(f"Sorry, your loan is likely to be rejected. The approval chance is {probability:.2%}.")
            
            # Visualization of prediction probability
            fig = go.Figure(go.Indicator(
                mode = "gauge+number",
                value = probability * 100,
                domain = {'x': [0, 1], 'y': [0, 1]},
                title = {'text': "Approval Probability"},
                gauge = {
                    'axis': {'range': [0, 100]},
                    'bar': {'color': "darkblue"},
                    'steps': [
                        {'range': [0, 30], 'color': "lightgray"},
                        {'range': [30, 70], 'color': "gray"},
                        {'range': [70, 100], 'color': "darkgray"}
                    ],
                    'threshold': {
                        'line': {'color': "red", 'width': 4},
                        'thickness': 0.75,
                        'value': 30
                    }
                }
            ))
            st.plotly_chart(fig)
    
    elif page == "Explore Data":
        st.title("Explore Loan Application Data")
        
        # Data overview
        st.subheader("Data Overview")
        st.write(data.head())
        st.write(f"Total number of records: {len(data)}")
        
        # Loan Status Distribution
        st.subheader("Loan Status Distribution")
        fig = px.pie(data, names='Loan_Status', title='Loan Status Distribution', hole=0.3,
                     color_discrete_sequence=px.colors.sequential.RdBu)
        st.plotly_chart(fig)
        
        # Correlation Heatmap
        st.subheader("Correlation Heatmap")
        numeric_cols = data.select_dtypes(include=[np.number]).columns
        corr_matrix = data[numeric_cols].corr()
        fig = px.imshow(corr_matrix, text_auto=True, aspect="auto", color_continuous_scale='RdBu')
        st.plotly_chart(fig)
        
        # Loan Amount Distribution
        st.subheader("Loan Amount Distribution")
        fig = px.histogram(data, x="LoanAmount", nbins=50, title="Loan Amount Distribution",
                           color="Loan_Status", color_discrete_sequence=px.colors.sequential.RdBu)
        st.plotly_chart(fig)
        
        # Applicant Income vs Loan Amount
        st.subheader("Applicant Income vs Loan Amount")
        fig = px.scatter(data, x="ApplicantIncome", y="LoanAmount", color="Loan_Status",
                         title="Applicant Income vs Loan Amount",
                         color_discrete_sequence=px.colors.sequential.RdBu)
        st.plotly_chart(fig)
        
        # Loan Status by Education and Credit History
        st.subheader("Loan Status by Education and Credit History")
        fig = px.sunburst(data, path=['Education', 'Credit_History', 'Loan_Status'],
                          title="Loan Status by Education and Credit History",
                          color='Loan_Status', color_discrete_sequence=px.colors.sequential.RdBu)
        st.plotly_chart(fig)

if __name__ == "__main__":
    main()