Spaces:
Runtime error
Runtime error
File size: 8,125 Bytes
0b7ab28 60b864d 0b7ab28 c6131e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import StandardScaler
@st.cache_data
def load_and_preprocess_data():
data = pd.read_csv('train.csv')
data['Gender'].fillna(data['Gender'].mode()[0], inplace=True)
data['Married'].fillna(data['Married'].mode()[0], inplace=True)
data['Dependents'].fillna(data['Dependents'].mode()[0], inplace=True)
data['Self_Employed'].fillna(data['Self_Employed'].mode()[0], inplace=True)
data['LoanAmount'].fillna(data['LoanAmount'].median(), inplace=True)
data['Loan_Amount_Term'].fillna(data['Loan_Amount_Term'].mode()[0], inplace=True)
data['Credit_History'].fillna(data['Credit_History'].mode()[0], inplace=True)
data['Dependents'] = data['Dependents'].replace('3+', '3').astype(int)
data['LoanAmount'] = np.log1p(data['LoanAmount'])
data['ApplicantIncome'] = np.log1p(data['ApplicantIncome'])
data['CoapplicantIncome'] = np.log1p(data['CoapplicantIncome'])
return data
@st.cache_resource
def get_model(data):
# Prepare the data
X = data.drop(['Loan_ID', 'Loan_Status'], axis=1)
y = data['Loan_Status']
# Handle categorical variables
X = pd.get_dummies(X, drop_first=True)
# Store feature names
feature_names = X.columns.tolist()
# Split the data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Scale the features
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Train the model
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train_scaled, y_train)
return model, scaler, feature_names
def predict_loan_approval(model, scaler, feature_names, input_data):
input_df = pd.DataFrame([input_data])
input_df = pd.get_dummies(input_df, drop_first=True)
for col in feature_names:
if col not in input_df.columns:
input_df[col] = 0
input_df = input_df.reindex(columns=feature_names, fill_value=0)
input_scaled = scaler.transform(input_df)
prediction = model.predict(input_scaled)
probability = model.predict_proba(input_scaled)[0][1]
adjusted_probability = max(probability, 0.3)
adjusted_prediction = 'Y' if adjusted_probability >= 0.3 else 'N'
return adjusted_prediction, adjusted_probability
# Streamlit app
def main():
st.set_page_config(page_title="Loan Approval Predictor", layout="wide")
# Sidebar
st.sidebar.title("Navigation")
page = st.sidebar.radio("Go to", ["Predict", "Explore Data"])
# Load data and model
data = load_and_preprocess_data()
model, scaler, feature_names = get_model(data)
if page == "Predict":
st.title("Loan Approval Predictor")
st.write("Fill in the details below to predict your loan approval chances.")
col1, col2, col3 = st.columns(3)
with col1:
gender = st.selectbox("Gender", ["Male", "Female"])
married = st.selectbox("Married", ["Yes", "No"])
dependents = st.selectbox("Dependents", ["0", "1", "2", "3+"])
education = st.selectbox("Education", ["Graduate", "Not Graduate"])
with col2:
self_employed = st.selectbox("Self Employed", ["Yes", "No"])
applicant_income = st.number_input("Applicant Income", min_value=0)
coapplicant_income = st.number_input("Coapplicant Income", min_value=0)
loan_amount = st.number_input("Loan Amount", min_value=0)
with col3:
loan_amount_term = st.number_input("Loan Amount Term (in months)", min_value=0)
credit_history = st.selectbox("Credit History", [0, 1])
property_area = st.selectbox("Property Area", ["Urban", "Semiurban", "Rural"])
if st.button("Predict"):
input_data = {
'Gender': gender,
'Married': married,
'Dependents': dependents,
'Education': education,
'Self_Employed': self_employed,
'ApplicantIncome': np.log1p(applicant_income),
'CoapplicantIncome': np.log1p(coapplicant_income),
'LoanAmount': np.log1p(loan_amount),
'Loan_Amount_Term': loan_amount_term,
'Credit_History': credit_history,
'Property_Area': property_area
}
prediction, probability = predict_loan_approval(model, scaler, feature_names, input_data)
st.subheader("Prediction Result")
if prediction == 'Y':
st.success(f"Congratulations! Your loan is likely to be approved with a {probability:.2%} chance.")
else:
st.error(f"Sorry, your loan is likely to be rejected. The approval chance is {probability:.2%}.")
# Visualization of prediction probability
fig = go.Figure(go.Indicator(
mode = "gauge+number",
value = probability * 100,
domain = {'x': [0, 1], 'y': [0, 1]},
title = {'text': "Approval Probability"},
gauge = {
'axis': {'range': [0, 100]},
'bar': {'color': "darkblue"},
'steps': [
{'range': [0, 30], 'color': "lightgray"},
{'range': [30, 70], 'color': "gray"},
{'range': [70, 100], 'color': "darkgray"}
],
'threshold': {
'line': {'color': "red", 'width': 4},
'thickness': 0.75,
'value': 30
}
}
))
st.plotly_chart(fig)
elif page == "Explore Data":
st.title("Explore Loan Application Data")
# Data overview
st.subheader("Data Overview")
st.write(data.head())
st.write(f"Total number of records: {len(data)}")
# Loan Status Distribution
st.subheader("Loan Status Distribution")
fig = px.pie(data, names='Loan_Status', title='Loan Status Distribution', hole=0.3,
color_discrete_sequence=px.colors.sequential.RdBu)
st.plotly_chart(fig)
# Correlation Heatmap
st.subheader("Correlation Heatmap")
numeric_cols = data.select_dtypes(include=[np.number]).columns
corr_matrix = data[numeric_cols].corr()
fig = px.imshow(corr_matrix, text_auto=True, aspect="auto", color_continuous_scale='RdBu')
st.plotly_chart(fig)
# Loan Amount Distribution
st.subheader("Loan Amount Distribution")
fig = px.histogram(data, x="LoanAmount", nbins=50, title="Loan Amount Distribution",
color="Loan_Status", color_discrete_sequence=px.colors.sequential.RdBu)
st.plotly_chart(fig)
# Applicant Income vs Loan Amount
st.subheader("Applicant Income vs Loan Amount")
fig = px.scatter(data, x="ApplicantIncome", y="LoanAmount", color="Loan_Status",
title="Applicant Income vs Loan Amount",
color_discrete_sequence=px.colors.sequential.RdBu)
st.plotly_chart(fig)
# Loan Status by Education and Credit History
st.subheader("Loan Status by Education and Credit History")
fig = px.sunburst(data, path=['Education', 'Credit_History', 'Loan_Status'],
title="Loan Status by Education and Credit History",
color='Loan_Status', color_discrete_sequence=px.colors.sequential.RdBu)
st.plotly_chart(fig)
if __name__ == "__main__":
main() |